Skip to main content

Advertisement

Log in

Nanoparticles as Cell Tracking Agents in Human Ocular Cell Transplantation Therapy

  • Regenerative Medicine in Ophthalmology (D Myung, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Here we explore the use of nanoparticles (NPs) as cell tracking agents in ocular cell therapy.

Recent Findings

Cell transplantation is a promising strategy for treating degenerative eye disorders for which no curative therapies exist, including age-related macular degeneration (AMD), diabetic retinopathy, and glaucoma. While past and ongoing clinical trials of ocular cell transplantation have demonstrated encouraging findings, our insight into their successes and failures is limited, in large part due to the difficulty of following the fate of the transplanted cells in the human eye. In this regard, NPs warrant consideration as novel cell tracking agents in vivo, with potential advantages over other labeling methods such as fluorescent reporters and DNA barcoding. Two classes of NP—gold nanoparticles (GNPs) and superparamagnetic iron oxide nanoparticles (SPIONs)—may be particularly well-suited for longitudinal cell tracking in the eye, owing to their safety profile and compatibility with clinical imaging modalities.

Summary

GNPs and SPIONs have demonstrated potential for tracking human ocular cell therapy. Further research should be aimed at elucidating their eye-specific imaging characteristics, safety, and clearance. Our ability to accurately assess the critical processes in ocular cell transplantation—delivery, distribution, immune acceptance, retention, and integration—will help accelerate the progress of regenerative medicine in the eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourne R, et al. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study. Lancet Glob Health. 2021;9:e130–43. https://doi.org/10.1016/S2214-109X(20)30425-3.

    Article  Google Scholar 

  2. Regent F, et al. Automation of human pluripotent stem cell differentiation toward retinal pigment epithelial cells for large-scale productions. Sci Rep. 2019;9:10646. https://doi.org/10.1038/s41598-019-47123-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R. Intravitreal injection of autologous bone marrow–derived mononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina. 2011;31:1207–14. https://doi.org/10.1097/IAE.0b013e3181f9c242.

    Article  PubMed  Google Scholar 

  4. Schwartz SD, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379:713–20. https://doi.org/10.1016/S0140-6736(12)60028-2.

    Article  CAS  PubMed  Google Scholar 

  5. Park SS, Bauer G, Abedi M, et al. Intravitreal autologous bone marrow cd34+ cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings. Invest Ophthalmol Vis Sci. 2015;56(1):81–9.

  6. Schwartz SD, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385:509–16. https://doi.org/10.1016/S0140-6736(14)61376-3.

    Article  PubMed  Google Scholar 

  7. Song WK, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium preliminary results in Asian patients. Stem Cell Rep. 2015;4:860–72. https://doi.org/10.1016/j.stemcr.2015.04.005.

    Article  CAS  Google Scholar 

  8. Weiss J, Levy S, Malkin A. Stem Cell Ophthalmology Treatment Study (SCOTS) for retinal and optic nerve diseases: a preliminary report. Neural Regen Res. 2015;10:982. https://doi.org/10.4103/1673-5374.158365.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Oner A, Gonen ZB, Sinim N, Cetin M, Ozkul Y. Subretinal adipose tissue-derived mesenchymal stem cell implantation in advanced stage retinitis pigmentosa: a phase I clinical safety study. Stem Cell Res Ther. 2016;7:178. https://doi.org/10.1186/s13287-016-0432-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cotrim C, Toscano L, Messias A, Jorge R, Siqueira R. Intravitreal use of bone marrow mononuclear fraction containing CD34+ stem cells in patients with atrophic age-related macular degeneration. Clin Ophthalmol. 2017;11:931–8. https://doi.org/10.2147/OPTH.S133502.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ho AC, et al. Experience with a subretinal cell-based therapy in patients with geographic atrophy secondary to age-related macular degeneration. Am J Ophthalmol. 2017;179:67–80. https://doi.org/10.1016/j.ajo.2017.04.006.

    Article  PubMed  Google Scholar 

  12. Liu Y, et al. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem Cell Res Ther. 2017;8:209. https://doi.org/10.1186/s13287-017-0661-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mandai M, et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med. 2017;376:1038–46. https://doi.org/10.1056/NEJMoa1608368.

    Article  CAS  PubMed  Google Scholar 

  14. Weiss JN, Levy S, Benes SC. Stem Cell Ophthalmology Treatment Study: bone marrow derived stem cells in the treatment of non-arteritic ischemic optic neuropathy (NAION). Stem Cell Investig. 2017;94.https://doi.org/10.21037/sci.2017.11.05.

  15. da Cruz L, et al. Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36:328–37. https://doi.org/10.1038/nbt.4114.

    Article  CAS  PubMed  Google Scholar 

  16. Gu X, et al. Efficacy and safety of autologous bone marrow mesenchymal stem cell transplantation in patients with diabetic retinopathy. Cell Physiol Biochem. 2018;49:40–52. https://doi.org/10.1159/000492838.

    Article  CAS  PubMed  Google Scholar 

  17. Kashani AH, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10:eaao4097. https://doi.org/10.1126/scitranslmed.aao4097.

    Article  CAS  PubMed  Google Scholar 

  18. Kinoshita S, et al. Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. N Engl J Med. 2018;378:995–1003. https://doi.org/10.1056/NEJMoa1712770.

    Article  CAS  PubMed  Google Scholar 

  19. Mehat MS, et al. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology. 2018;125:1765–75. https://doi.org/10.1016/j.ophtha.2018.04.037.

    Article  PubMed  Google Scholar 

  20. Oner A, Gonen ZB, Sevim DG, Smim Kahraman N, Unlu M. Suprachoroidal adipose tissue-derived mesenchymal stem cell implantation in patients with dry-type age-related macular degeneration and Stargardt’s macular dystrophy: 6-month follow-up results of a phase 2 study. Cell Reprogram. 2018;20:329–36. https://doi.org/10.1089/cell.2018.0045.

    Article  CAS  PubMed  Google Scholar 

  21. Weiss JN, Levy S. Stem Cell Ophthalmology Treatment Study: bone marrow derived stem cells in the treatment of retinitis pigmentosa. Stem Cell Investig. 2018;5:18–18. https://doi.org/10.21037/sci.2018.04.02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oner A, Gonen ZB, Sevim DG, Sinim Kahraman N, Unlu M. Six-month results of suprachoroidal adipose tissue-derived mesenchymal stem cell implantation in patients with optic atrophy: a phase 1/2 study. Int Ophthalmol. 2019;39:2913–22. https://doi.org/10.1007/s10792-019-01141-5.

    Article  PubMed  Google Scholar 

  23. Kahraman NS, Öner A. Umbilical cord-derived mesenchymal stem cell implantation in patients with optic atrophy. Eur J Ophthalmol. 2020:112067212097782. https://doi.org/10.1177/1120672120977824.

  24. Kahraman NS. Umbilical cord derived mesenchymal stem cell implantation in retinitis pigmentosa: a 6-month follow-up results of a phase 3 trial. Int J Ophthalmol. 2020;13:1423–9. https://doi.org/10.18240/ijo.2020.09.14.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Özmert E, Arslan U. Management of retinitis pigmentosa by Wharton’s jelly-derived mesenchymal stem cells: prospective analysis of 1-year results. Stem Cell Res Ther. 2020;11:353. https://doi.org/10.1186/s13287-020-01870-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao T, et al. Intravenous infusion of umbilical cord mesenchymal stem cells maintains and partially improves visual function in patients with advanced retinitis pigmentosa. Stem Cells Dev. 2020;29:1029–37. https://doi.org/10.1089/scd.2020.0037.

    Article  CAS  PubMed  Google Scholar 

  27. Nittala MG, et al. Effect of human central nervous system stem cell subretinal transplantation on progression of geographic atrophy secondary to nonneovascular age-related macular degeneration. Ophthalmol Retin. 2021;5:32–40. https://doi.org/10.1016/j.oret.2020.06.012.

    Article  Google Scholar 

  28. Sung Y, et al. Long-term safety and tolerability of subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium in Asian Stargardt disease patients. Br J Ophthalmol. 2021;105:829–37. https://doi.org/10.1136/bjophthalmol-2020-316225.

    Article  PubMed  Google Scholar 

  29. Tuekprakhon A, et al. Intravitreal autologous mesenchymal stem cell transplantation: a non-randomized phase I clinical trial in patients with retinitis pigmentosa. Stem Cell Res Ther. 2021;12:52. https://doi.org/10.1186/s13287-020-02122-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vilela CAP, et al. Retinal function after intravitreal injection of autologous bone marrow-derived mesenchymal stromal cells in advanced glaucoma. Doc Ophthalmol. 2021;143:33–8. https://doi.org/10.1007/s10633-021-09817-z.

    Article  PubMed  Google Scholar 

  31. Wiącek MP, et al. Long-term effects of adjuvant intravitreal treatment with autologous bone marrow-derived lineage-negative cells in retinitis pigmentosa. Stem Cells Int. 2021;2021:1–12. https://doi.org/10.1155/2021/6631921.

    Article  Google Scholar 

  32. Macsai MS, Shiloach M. Use of topical rho kinase inhibitors in the treatment of fuchs dystrophy after descemet stripping only. Cornea. 2019;38:529–34. https://doi.org/10.1097/ICO.0000000000001883.

    Article  PubMed  Google Scholar 

  33. Schlötzer-Schrehardt U, et al. Potential functional restoration of corneal endothelial cells in fuchs endothelial corneal dystrophy by ROCK inhibitor (Ripasudil). Am J Ophthalmol. 2021;224:185–99. https://doi.org/10.1016/j.ajo.2020.12.006.

    Article  CAS  PubMed  Google Scholar 

  34. Koizumi N, et al. Cultivated corneal endothelial cell sheet transplantation in a primate model. Invest Ophthalmol Vis Sci. 2007;48:4519. https://doi.org/10.1167/iovs.07-0567.

    Article  PubMed  Google Scholar 

  35. Mimura T, et al. Long-term outcome of iron-endocytosing cultured corneal endothelial cell transplantation with magnetic attraction. Exp Eye Res. 2005;80:149–57. https://doi.org/10.1016/j.exer.2004.08.021.

    Article  CAS  PubMed  Google Scholar 

  36. Mimura T, et al. Magnetic attraction of iron-endocytosed corneal endothelial cells to Descemet’s membrane. Exp Eye Res. 2003;76:745–51. https://doi.org/10.1016/s0014-4835(03)00057-5.

    Article  CAS  PubMed  Google Scholar 

  37. Ladha R, Meenink T, Smit J, de Smet MD. Advantages of robotic assistance over a manual approach in simulated subretinal injections and its relevance for gene therapy. Gene Ther. 2021. https://doi.org/10.1038/s41434-021-00262-w.

    Article  PubMed  Google Scholar 

  38. Olsen TW, et al. Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of bevacizumab in a porcine model. Invest Ophthalmol Vis Sci. 2011;52:4749–56. https://doi.org/10.1167/iovs.10-6291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu J, Cifuentes H, Reynolds J, Lamba DA. Immunosuppression via loss of IL2rγ enhances long-term functional integration of hESC-derived photoreceptors in the mouse retina. Cell Stem Cell. 2017;20:374-384.e375. https://doi.org/10.1016/j.stem.2016.11.019.

    Article  CAS  PubMed  Google Scholar 

  40. Neves J, et al. Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science. 2016;353:aaf3646. https://doi.org/10.1126/science.aaf3646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Petrash CC, Palestine AG, Canto-Soler MV. Immunologic rejection of transplanted retinal pigmented epithelium: mechanisms and strategies for prevention. Front Immunol. 2021;12: 621007. https://doi.org/10.3389/fimmu.2021.621007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kennelly KP, Holmes TM, Wallace DM, O’Farrelly C, Keegan DJ. Early subretinal allograft rejection is characterized by innate immune activity. Cell Transplant. 2017;26:983–1000. https://doi.org/10.3727/096368917X694697.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev. 2017;122:31–64. https://doi.org/10.1016/j.addr.2017.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li Q, Weng J, Wong SN, Thomas Lee WY, Chow SF. Nanoparticulate drug delivery to the retina. Mol Pharm. 2021;18:506–21. https://doi.org/10.1021/acs.molpharmaceut.0c00224.

    Article  CAS  PubMed  Google Scholar 

  45. Vert M, et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem. 2012;84:377–410. https://doi.org/10.1351/PAC-REC-10-12-04.

    Article  CAS  Google Scholar 

  46. Stripecke R, et al. Immune response to green fluorescent protein: implications for gene therapy. Gene Ther. 1999;6:1305–12. https://doi.org/10.1038/sj.gt.3300951.

    Article  CAS  PubMed  Google Scholar 

  47. Ansari AM, et al. Cellular GFP toxicity and immunogenicity: potential confounders in in vivo cell tracking experiments. Stem Cell Rev Rep. 2016;12:553–9. https://doi.org/10.1007/s12015-016-9670-8.

    Article  CAS  PubMed  Google Scholar 

  48. Hacein-Bey-Abina S. LMO2-Associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–9. https://doi.org/10.1126/science.1088547.

    Article  CAS  PubMed  Google Scholar 

  49. Ott MG, et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med. 2006;12:401–9. https://doi.org/10.1038/nm1393.

    Article  CAS  PubMed  Google Scholar 

  50. Herbst F, et al. Extensive methylation of promoter sequences silences lentiviral transgene expression during stem cell differentiation in vivo. Mol Ther. 2012;20:1014–21. https://doi.org/10.1038/mt.2012.46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Smith RH. Adeno-associated virus integration: virus versus vector. Gene Ther. 2008;15:817–22. https://doi.org/10.1038/gt.2008.55.

    Article  CAS  PubMed  Google Scholar 

  52. Chan YK, et al. Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses. Sci Transl Med. 2021;13:eabd3438. https://doi.org/10.1126/scitranslmed.abd3438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bainbridge JWB, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med. 2015;372:1887–97. https://doi.org/10.1056/NEJMoa1414221.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dimopoulos IS, et al. Two-year results after AAV2-mediated gene therapy for choroideremia: the Alberta experience. Am J Ophthalmol. 2018;193:130–42. https://doi.org/10.1016/j.ajo.2018.06.011.

    Article  PubMed  Google Scholar 

  55. Xue K, et al. Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia. Nat Med. 2018;24:1507–12. https://doi.org/10.1038/s41591-018-0185-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cavazzana M, Bushman FD, Miccio A, André-Schmutz I, Six E. Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat Rev Drug Discov. 2019;18:447–62. https://doi.org/10.1038/s41573-019-0020-9.

    Article  CAS  PubMed  Google Scholar 

  57. Mamcarz E, et al. Lentiviral gene therapy combined with low-dose busulfan in infants with SCID-X1. N Engl J Med. 2019;380:1525–34. https://doi.org/10.1056/NEJMoa1815408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sharma R, et al. The TRACE-Seq method tracks recombination alleles and identifies clonal reconstitution dynamics of gene targeted human hematopoietic stem cells. Nat Commun. 2021;12:472. https://doi.org/10.1038/s41467-020-20792-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao D, et al. Preliminary clinical experience applying donor-derived cell-free DNA to discern rejection in pediatric liver transplant recipients. Sci Rep. 2021;11:1138. https://doi.org/10.1038/s41598-020-80845-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cesana D, et al. Retrieval of vector integration sites from cell-free DNA. Nat Med. 2021. https://doi.org/10.1038/s41591-021-01389-4.

    Article  PubMed  Google Scholar 

  61. Bustamante P, et al. Circulating tumor DNA tracking through driver mutations as a liquid biopsy-based biomarker for uveal melanoma. J Exp Clin Cancer Res. 2021;40:196. https://doi.org/10.1186/s13046-021-01984-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Eissenberg LG, et al. [18 F]FHBG PET/CT Imaging of CD34-TK75 transduced donor T cells in relapsed allogeneic stem cell transplant patients: safety and feasibility. Mol Ther. 2015;23:1110–22. https://doi.org/10.1038/mt.2015.48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stojanov K, et al. [18 F]FDG labeling of neural stem cells for in vivo cell tracking with positron emission tomography: inhibition of tracer release by phloretin. Mol Imaging. 2011;11:7290.2011.00021. https://doi.org/10.2310/7290.2011.00021.

    Article  CAS  Google Scholar 

  64. Perrin J, et al. Cell Tracking in Cancer Immunotherapy. Front Med. 2020;7:34. https://doi.org/10.3389/fmed.2020.00034.

    Article  Google Scholar 

  65. Sato N, et al. In vivo tracking of adoptively transferred natural killer cells in rhesus macaques using 89-zirconium-oxine cell labeling and PET imaging. Clin Cancer Res. 2020;26:2573–81. https://doi.org/10.1158/1078-0432.CCR-19-2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Keu KV, et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med. 2017;9:eaag2196. https://doi.org/10.1126/scitranslmed.aag2196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rastinehad AR, et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci. 2019;116:18590–6. https://doi.org/10.1073/pnas.1906929116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kumthekar P, et al. A first-in-human phase 0 clinical study of RNA interference–based spherical nucleic acids in patients with recurrent glioblastoma. Sci Transl Med. 2021;13:eabb3945. https://doi.org/10.1126/scitranslmed.abb3945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chemla Y, et al. Gold nanoparticles for multimodal high-resolution imaging of transplanted cells for retinal replacement therapy. Nanomedicine. 2019;14:1857–71. https://doi.org/10.2217/nnm-2018-0299.

    Article  CAS  PubMed  Google Scholar 

  70. Oumano M, et al. CT imaging of gold nanoparticles in a human-sized phantom. J Appl Clin Med Phys. 2021;22:337–42. https://doi.org/10.1002/acm2.13155.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110:7238–48. https://doi.org/10.1021/jp057170o.

    Article  CAS  PubMed  Google Scholar 

  72. Huang X, El-Sayed MA. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 2010;1:13–28. https://doi.org/10.1016/j.jare.2010.02.002.

    Article  Google Scholar 

  73. Li W, Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine. 2015;10:299–320. https://doi.org/10.2217/nnm.14.169.

    Article  CAS  PubMed  Google Scholar 

  74. Chen Y-S, Zhao Y, Yoon SJ, Gambhir SS, Emelianov S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat Nanotechnol. 2019;14:465–72. https://doi.org/10.1038/s41565-019-0392-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Si P, et al. Gold nanobipyramids as second near infrared optical coherence tomography contrast agents for in vivo multiplexing studies. Nano Lett. 2020;20:101–8. https://doi.org/10.1021/acs.nanolett.9b03344.

    Article  CAS  PubMed  Google Scholar 

  76. Lee KS, El-Sayed MA. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B. 2005;109:20331–8. https://doi.org/10.1021/jp054385p.

    Article  CAS  PubMed  Google Scholar 

  77. Steinberg I, et al. Photoacoustic clinical imaging. Photoacoustics. 2019;14:77–98. https://doi.org/10.1016/j.pacs.2019.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kubelick KP, Snider EJ, Ethier CR, Emelianov S. Development of a stem cell tracking platform for ophthalmic applications using ultrasound and photoacoustic imaging. Theranostics. 2019;9:3812–24. https://doi.org/10.7150/thno.32546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nguyen VP, et al. Chain-like gold nanoparticle clusters for multimodal photoacoustic microscopy and optical coherence tomography enhanced molecular imaging. Nat Commun. 2021;12:34. https://doi.org/10.1038/s41467-020-20276-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Carnovale C, Bryant G, Shukla R, Bansal V. Identifying trends in gold nanoparticle toxicity and uptake: size, shape, capping ligand, and biological corona. ACS Omega. 2019;4:242–56. https://doi.org/10.1021/acsomega.8b03227.

    Article  CAS  Google Scholar 

  81. Ricles LM, Nam SY, Sokolov K, Emelianov SY, Suggs LJ. Function of mesenchymal stem cells following loading of gold nanotracers. Int J Nanomedicine. 2011;6:407–16. https://doi.org/10.2147/ijn.S16354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li J, et al. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale. 2016;8:7992–8007. https://doi.org/10.1039/C5NR08808A.

    Article  CAS  PubMed  Google Scholar 

  83. Masse F, Ouellette M, Lamoureux G, Boisselier E. Gold nanoparticles in ophthalmology. Med Res Rev. 2019;39:302–27. https://doi.org/10.1002/med.21509.

    Article  PubMed  Google Scholar 

  84. Bailly A-L, et al. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci Rep. 2019;9:12890. https://doi.org/10.1038/s41598-019-48748-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim JH, Kim JH, Kim KW, Kim MH, Yu YS. Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology. 2009;20:505101. https://doi.org/10.1088/0957-4484/20/50/505101.

    Article  CAS  PubMed  Google Scholar 

  86. Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond). 2008;3:703–17. https://doi.org/10.2217/17435889.3.5.703.

    Article  CAS  Google Scholar 

  87. Song HB, et al. Intraocular application of gold nanodisks optically tuned for optical coherence tomography: inhibitory effect on retinal neovascularization without unbearable toxicity. Nanomedicine. 2017;13:1901–11. https://doi.org/10.1016/j.nano.2017.03.016.

    Article  CAS  PubMed  Google Scholar 

  88. Benn HP, von Gaudecker B, Czank M, Loeffler H. Crystalline and amorphous gold in chrysiasis. Arch Dermatol Res. 1990;282:172–8. https://doi.org/10.1007/bf00372618.

    Article  CAS  PubMed  Google Scholar 

  89. Balfourier A, et al. Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proc Natl Acad Sci. 2020;117:103–13. https://doi.org/10.1073/pnas.1911734116.

    Article  CAS  PubMed  Google Scholar 

  90. McCormick SA, DiBartolomeo AG, Raju VK, Schwab IR. Ocular chrysiasis. Ophthalmology. 1985;92:1432–5. https://doi.org/10.1016/S0161-6420(85)33846-0.

    Article  CAS  PubMed  Google Scholar 

  91. Bendix G, Bjelle A. A 10 year follow up of parenteral gold therapy in patients with rheumatoid arthritis. Ann Rheum Dis. 1996;55(3):169–76.

  92. Freyberg RH, Block WD, Levey S. Metabolism, toxicity and manner of action of gold compounds used in the treatment of arthritis. I. Human plasma and synovial fluid concentration and urinary excretion of gold during and following treatment with gold sodium thiomalate, gold sodium thiosulfate, and colloidal gold sulfide. J Clin Invest. 1941;20:401–12. https://doi.org/10.1172/jci101235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ghadially FN. The aurosome. J Rheumatol Suppl. 1979;5:45–50.

    CAS  PubMed  Google Scholar 

  94. Toth GB, et al. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int. 2017;92:47–66. https://doi.org/10.1016/j.kint.2016.12.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yanai A, et al. Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant. 2012;21:1137–48. https://doi.org/10.3727/096368911X627435.

    Article  PubMed  Google Scholar 

  96. Snider EJ, et al. Improving stem cell delivery to the trabecular meshwork using magnetic nanoparticles. Sci Rep. 2018;8:12251. https://doi.org/10.1038/s41598-018-30834-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xia X, et al. Magnetic human corneal endothelial cell transplant: delivery, retention, and short-term efficacy. Invest Ophthalmol Vis Sci. 2019;60:2438. https://doi.org/10.1167/iovs.18-26001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Weissleder R, Cheng HC, Bogdanova A, Bogdanov A Jr. Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging. 1997;7:258–63. https://doi.org/10.1002/jmri.1880070140.

    Article  CAS  PubMed  Google Scholar 

  99. Loebinger MR, et al. Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Res. 2009;69:8862–7. https://doi.org/10.1158/0008-5472.Can-09-1912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hsiao JK, et al. Mesoporous silica nanoparticles as a delivery system of gadolinium for effective human stem cell tracking. Small. 2008;4:1445–52. https://doi.org/10.1002/smll.200701316.

    Article  CAS  PubMed  Google Scholar 

  101. Bulte JWM, Daldrup-Link HE. Clinical tracking of cell transfer and cell transplantation: trials and tribulations. Radiology. 2018;289:604–15. https://doi.org/10.1148/radiol.2018180449.

    Article  PubMed  Google Scholar 

  102. Muehe AM, et al. How to provide gadolinium-free PET/MR cancer staging of children and young adults in less than 1 h: the Stanford Approach. Mol Imaging Biol. 2018;20:324–35. https://doi.org/10.1007/s11307-017-1105-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gorelik M, et al. Use of MR cell tracking to evaluate targeting of glial precursor cells to inflammatory tissue by exploiting the very late antigen-4 docking receptor. Radiology. 2012;265:175–85. https://doi.org/10.1148/radiol.12112212.

    Article  PubMed  PubMed Central  Google Scholar 

  104. de Vries IJM, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol. 2005;23:1407–13. https://doi.org/10.1038/nbt1154.

    Article  CAS  PubMed  Google Scholar 

  105. Li Calzi S, et al. Labeling of stem cells with monocrystalline iron oxide for tracking and localization by magnetic resonance imaging. Microvasc Res. 2009;78:132–9. https://doi.org/10.1016/j.mvr.2009.03.007.

    Article  CAS  PubMed  Google Scholar 

  106. Ma DJ, et al. Magnetic iron oxide nanoparticle labeling of photoreceptor precursors for magnetic resonance imaging. Tissue Eng Part C Methods. 2019;25:532–42. https://doi.org/10.1089/ten.tec.2019.0136.

    Article  CAS  PubMed  Google Scholar 

  107. Nedopil A, et al. MR signal characteristics of viable and apoptotic human mesenchymal stem cells in matrix-associated stem cell implants for treatment of osteoarthritis. Invest Radiol. 2010;45:634–40. https://doi.org/10.1097/RLI.0b013e3181ed566c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cromer Berman SM, et al. Cell motility of neural stem cells is reduced after SPIO-labeling, which is mitigated after exocytosis. Magn Reson Med. 2013;69:255–62. https://doi.org/10.1002/mrm.24216.

    Article  CAS  PubMed  Google Scholar 

  109. Cianciaruso C, et al. Cellular magnetic resonance with iron oxide nanoparticles: long-term persistence of SPIO signal in the CNS after transplanted cell death. Nanomedicine. 2014;9:1457–74. https://doi.org/10.2217/nnm.14.84.

    Article  CAS  PubMed  Google Scholar 

  110. Glarin RK, et al. MR-EYE: High-resolution MRI of the human eye and orbit at ultrahigh field (7T). Magn Reson Imaging Clin N Am. 2021;29:103–16. https://doi.org/10.1016/j.mric.2020.09.004.

    Article  PubMed  Google Scholar 

  111. Grant A, et al. 10.5 T MRI static field effects on human cognitive, vestibular, and physiological function. Magn Reson Imaging. 2020;73:163–76. https://doi.org/10.1016/j.mri.2020.08.004.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Landry R, Jacobs PM, Davis R, Shenouda M, Bolton WK. Pharmacokinetic study of ferumoxytol: a new iron replacement therapy in normal subjects and hemodialysis patients. Am J Nephrol. 2005;25:400–10. https://doi.org/10.1159/000087212.

    Article  CAS  PubMed  Google Scholar 

  113. Raju HB, Hu Y, Padgett KR, Rodriguez JE, Goldberg JL. Investigation of nanoparticles using magnetic resonance imaging after intravitreal injection: nanoparticle detection by MRI. Clin Exp Ophthalmol. 2012;40:100–7. https://doi.org/10.1111/j.1442-9071.2011.02651.x.

    Article  PubMed  Google Scholar 

  114. Badman RP, et al. Dextran-coated iron oxide nanoparticle-induced nanotoxicity in neuron cultures. Sci Rep. 2020;10:11239. https://doi.org/10.1038/s41598-020-67724-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ohki A, Saito S, Fukuchi K. Magnetic resonance imaging of umbilical cord stem cells labeled with superparamagnetic iron oxide nanoparticles: effects of labelling and transplantation parameters. Sci Rep. 2020;10:13684. https://doi.org/10.1038/s41598-020-70291-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Grottone GT, Loureiro RR, Covre J, Rodrigues EB, Gomes JÁP. ARPE-19 Cell Uptake of small and ultrasmall superparamagnetic iron oxide. Curr Eye Res. 2014;39:403–10. https://doi.org/10.3109/02713683.2013.845228.

    Article  CAS  PubMed  Google Scholar 

  117. Tzameret A, et al. In vivo MRI assessment of bioactive magnetic iron oxide/human serum albumin nanoparticle delivery into the posterior segment of the eye in a rat model of retinal degeneration. J Nanobiotechnol. 2019;17:3. https://doi.org/10.1186/s12951-018-0438-y.

    Article  Google Scholar 

  118. Wu LC, et al. A review of magnetic particle imaging and perspectives on neuroimaging. AJNR Am J Neuroradiol. 2019;40:206–12. https://doi.org/10.3174/ajnr.A5896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Song G, et al. Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging. Nano Lett. 2018;18:182–9. https://doi.org/10.1021/acs.nanolett.7b03829.

    Article  CAS  PubMed  Google Scholar 

  120. Graeser M, et al. Human-sized magnetic particle imaging for brain applications. Nat Commun. 2019;10:1936. https://doi.org/10.1038/s41467-019-09704-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mason EE, et al. Concept for using magnetic particle imaging for intraoperative margin analysis in breast-conserving surgery. Sci Rep. 2021;11:13456. https://doi.org/10.1038/s41598-021-92644-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Maxwell T, Nogueira Campos MG, Smith S, Doomra M, Thwin Z, Santra S. Quantum dots. In: Nanoparticles for Biomedical Applications. Elsevier; 2020:243–65.

  123. Ogihara Y, et al. Labeling and in vivo visualization of transplanted adipose tissue-derived stem cells with safe cadmium-free aqueous ZnS coating of ZnS-AgInS2 nanoparticles. Sci Rep. 2017;7:40047. https://doi.org/10.1038/srep40047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sarwat S, Stapleton F, Willcox M, Roy M. Quantum dots in ophthalmology: a literature review. Curr Eye Res. 2019;44:1037–46. https://doi.org/10.1080/02713683.2019.1660793.

    Article  CAS  PubMed  Google Scholar 

  125. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The effects of cadmium toxicity. Int J Environ Res Public Health. 2020;17:3782. https://doi.org/10.3390/ijerph17113782.

    Article  CAS  PubMed Central  Google Scholar 

  126. Zhong L, et al. Assessment of the toxicity of quantum dots through biliometric analysis. Int J Environ Res Public Health. 2021;18:5768. https://doi.org/10.3390/ijerph18115768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev. 2014;114:5161–214. https://doi.org/10.1021/cr400425h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ma Y, et al. Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae. Cell. 2019;177:243-255.e215. https://doi.org/10.1016/j.cell.2019.01.038.

    Article  CAS  PubMed  Google Scholar 

  129. Wang Z, et al. Large-scale one-pot synthesis of water-soluble and biocompatible upconversion nanoparticles for dual-modal imaging. Colloids Surf B. 2021;198:111480. https://doi.org/10.1016/j.colsurfb.2020.111480.

    Article  CAS  Google Scholar 

  130. Pallares RM, et al. Genome-wide toxicogenomic study of the lanthanides sheds light on the selective toxicity mechanisms associated with critical materials. Proc Natl Acad Sci. 2021;118:e2025952118. https://doi.org/10.1073/pnas.2025952118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vucic S, et al. Study protocol of RESCUE-ALS: A Phase 2, randomised, double-blind, placebo-controlled study in early symptomatic amyotrophic lateral sclerosis patients to assess bioenergetic catalysis with CNM-Au8 as a mechanism to slow disease progression. BMJ Open. 2021;11:e041479. https://doi.org/10.1136/bmjopen-2020-041479.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Aboualizadeh E, et al. Imaging transplanted photoreceptors in living nonhuman primates with single-cell resolution. Stem Cell Rep. 2020;15:482–97. https://doi.org/10.1016/j.stemcr.2020.06.019.

    Article  CAS  Google Scholar 

  133. Miller DT, Kurokawa K. Cellular-scale imaging of transparent retinal structures and processes using adaptive optics optical coherence tomography. Annu Rev Vis Sci. 2020;6:115–48. https://doi.org/10.1146/annurev-vision-030320-041255.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Plan Sangnier A, et al. Impact of magnetic nanoparticle surface coating on their long-term intracellular biodegradation in stem cells. Nanoscale. 2019;11:16488–98. https://doi.org/10.1039/C9NR05624F.

    Article  CAS  PubMed  Google Scholar 

  135. Kostura L, Kraitchman DL, Mackay AM, Pittenger MF, Bulte JW. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed. 2004;17:513–7. https://doi.org/10.1002/nbm.925.

    Article  PubMed  Google Scholar 

  136. Sykova E, Jendelova P. In vivo tracking of stem cells in brain and spinal cord injury. Prog Brain Res. 2007;161:367–83. https://doi.org/10.1016/s0079-6123(06)61026-1.

    Article  CAS  PubMed  Google Scholar 

  137. Nejadnik H, et al. Instant labeling of therapeutic cells for multimodality imaging. Theranostics. 2020;10:6024–34. https://doi.org/10.7150/thno.39554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Laffey MK, Kubelick KP, Donnelly EM, Emelianov SY. Effects of freezing on mesenchymal stem cells labeled with gold nanoparticles. Tissue Eng Part C Methods. 2020;26:1–10. https://doi.org/10.1089/ten.tec.2019.0198.

    Article  CAS  PubMed  Google Scholar 

  139. Kitahata S, et al. Critical functionality effects from storage temperature on human induced pluripotent stem cell-derived retinal pigment epithelium cell suspensions. Sci Rep. 2019;9:2891. https://doi.org/10.1038/s41598-018-38065-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kumar A, Xu Y, Yang E, Wang Y, Du Y. Fidelity of long-term cryopreserved adipose-derived stem cells for differentiation into cells of ocular and other lineages. Exp Eye Res. 2019;189:107860. https://doi.org/10.1016/j.exer.2019.107860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pennington BO, et al. Xeno-free cryopreservation of adherent retinal pigmented epithelium yields viable and functional cells in vitro and in vivo. Sci Rep. 2021;11:6286. https://doi.org/10.1038/s41598-021-85631-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Manuguerra-Gagné R, et al. Transplantation of mesenchymal stem cells promotes tissue regeneration in a glaucoma model through laser-induced paracrine factor secretion and progenitor cell recruitment. Stem Cells. 2013;31:1136–48. https://doi.org/10.1002/stem.1364.

    Article  CAS  PubMed  Google Scholar 

  143. Roubeix C, et al. Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal model of glaucoma. Stem Cell Res Ther. 2015;6:177. https://doi.org/10.1186/s13287-015-0168-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zirm E. Eine erfolgreiche totale Keratoplastik. Graefes Arhiv Ophthalmol. 1906;64:580–93. https://doi.org/10.1007/BF01949227.

    Article  Google Scholar 

  145. Apte RS. Gene Therapy for Retinal Degeneration. Cell. 2018;173:5. https://doi.org/10.1016/j.cell.2018.03.021.

    Article  CAS  PubMed  Google Scholar 

  146. Leow SN, et al. Safety and efficacy of human Wharton’s jelly-derived mesenchymal stem cells therapy for retinal degeneration. PLoS ONE. 2015;10:e0128973. https://doi.org/10.1371/journal.pone.0128973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mok P, et al. Micro-computed tomography detection of gold nanoparticle-labelled mesenchymal stem cells in the rat subretinal layer. Int J Mol Sci. 2017;18:345. https://doi.org/10.3390/ijms18020345.

    Article  CAS  PubMed Central  Google Scholar 

  148. Toda M, et al. In vivo fluorescence visualization of anterior chamber injected human corneal endothelial cells labeled with quantum dots. Invest Ophthalmol Vis Sci. 2019;60:4008. https://doi.org/10.1167/iovs.19-27788.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Mundy.

Ethics declarations

Conflict of Interest

David Mundy declares no conflict of interest. Jeffrey Goldberg reports grants from Astellas Institute for Regenerative Medicine, other from Emmecell, and personal fees from Zeiss Meditec, outside the submitted work; in addition, Dr. Goldberg has a patent use of NPs for cell delivery issued.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Regenerative Medicine in Ophthalmology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mundy, D.C., Goldberg, J.L. Nanoparticles as Cell Tracking Agents in Human Ocular Cell Transplantation Therapy. Curr Ophthalmol Rep 9, 133–145 (2021). https://doi.org/10.1007/s40135-021-00275-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-021-00275-z

Keywords

Navigation