Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

In-Depth Thinking About the Diagnostic Methods and Treatment Strategies for the Corneal Nerves in Ocular Surface Disorders

Abstract

Purpose of Review

We summarize recent developments in modern diagnostic tools for the corneal nerves, the diseased status reflected in corneal nerve changes, and the possible corneal nerve regenerative treatments.

Recent Findings

In vivo confocal microscopy (IVCM) and en face optical coherence tomography (EFOCT) are reliable tools for detecting the morphological changes of corneal nerves; while the esthesiometry is useful for studying the functional status of the corneal nerves. Corneal tortuosity increases in dry eye disease (DED) and neuropathic pain. Decreased of corneal nerve density in neurotrophic keratopathy (NK) is a marker of disease progression. Topical treatments of corneal nerve regeneration include substance P/insulin-like growth factor-1 combination and nerve growth factor. Blood-derived products rich in neurotrophic factors are also under investigation. For refractory NK, surgical corneal neurotization could be considered.

Summary

With the development of technology in detecting corneal nerves, we can quantify the disease progression by which greatly benefits the development of corneal regenerative treatment.

This is a preview of subscription content, log in to check access.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Labetoulle M, Baudouin C, Calonge M, Merayo-Lloves J, Boboridis KG, Akova YA, et al. Role of corneal nerves in ocular surface homeostasis and disease. Acta Ophthalmol. 2019;97(2):137–45.

  2. 2.

    Tseng SC, Tsubota K. Important concepts for treating ocular surface and tear disorders. Am J Ophthalmol. 1997;124(6):825–35.

  3. 3.

    Patel DV, McGhee CN. In vivo confocal microscopy of human corneal nerves in health, in ocular and systemic disease, and following corneal surgery: a review. Br J Ophthalmol. 2009;93(7):853–60.

  4. 4.

    Muller LJ, Marfurt CF, Kruse F, Tervo TM. Corneal nerves: structure, contents and function. Exp Eye Res. 2003;76(5):521–42.

  5. 5.

    May A. Morphology of the long and short uveal nerves in the human eye. J Anat. 2004;205(2):113–20.

  6. 6.

    Tervo T, Vannas A, Tervo K, Holden BA. Histochemical evidence of limited reinnervation of human corneal grafts. Acta Ophthalmol. 1985;63(2):207–14.

  7. 7.

    Marfurt CF, Cox J, Deek S, Dvorscak L. Anatomy of the human corneal innervation. Exp Eye Res. 2010;90(4):478–92.

  8. 8.

    Guthoff RF, Wienss H, Hahnel C, Wree A. Epithelial innervation of human cornea: a three-dimensional study using confocal laser scanning fluorescence microscopy. Cornea. 2005;24(5):608–13.

  9. 9.

    Marfurt CF, Kingsley RE, Echtenkamp SE. Sensory and sympathetic innervation of the mammalian cornea. A retrograde tracing study. Invest Ophthalmol Vis Sci. 1989;30(3):461–72.

  10. 10.

    •• Cruzat A, Qazi Y, Hamrah P. In vivo confocal microscopy of corneal nerves in health and disease. Ocul Surf. 2017;15(1):15–47 A comprehensive review of corneal nerve structures, tools for corneal nerve assessment, and the confocal microscopic changes of corneal nerves in healthy and disease status.

  11. 11.

    Gallar J, Pozo MA, Tuckett RP, Belmonte C. Response of sensory units with unmyelinated fibres to mechanical, thermal and chemical stimulation of the cat’s cornea. J Physiol. 1993;468:609–22.

  12. 12.

    Belmonte C, Gallar J, Pozo MA, Rebollo I. Excitation by irritant chemical substances of sensory afferent units in the cat’s cornea. J Physiol. 1991;437:709–25.

  13. 13.

    Belmonte C, Giraldez F. Responses of cat corneal sensory receptors to mechanical and thermal stimulation. J Physiol. 1981;321:355–68.

  14. 14.

    Dartt DA. Neural regulation of lacrimal gland secretory processes: relevance in dry eye diseases. Prog Retin Eye Res. 2009;28(3):155–77.

  15. 15.

    Cox SM, Nichols JJ. The neurobiology of the meibomian glands. Ocul Surf. 2014;12(3):167–77.

  16. 16.

    Rios JD, Forde K, Diebold Y, Lightman J, Zieske JD, Dartt DA. Development of conjunctival goblet cells and their neuroreceptor subtype expression. Invest Ophthalmol Vis Sci. 2000;41(8):2127–37.

  17. 17.

    Klenkler B, Sheardown H, Jones L. Growth factors in the tear film: role in tissue maintenance, wound healing, and ocular pathology. Ocul Surf. 2007;5(3):228–39.

  18. 18.

    Shaheen BS, Bakir M, Jain S. Corneal nerves in health and disease. Surv Ophthalmol. 2014;59(3):263–85.

  19. 19.

    • Mastropasqua L, Massaro-Giordano G, Nubile M, Sacchetti M. Understanding the pathogenesis of neurotrophic keratitis: the role of corneal nerves. J Cell Physiol. 2017;232(4):717–24 A mini-review that summarizes the evidence that neurotrophic keratopathy is a disorder caused by corneal nerve impairment associated with alteration of mediators, change of corneal cell mrophology and function, and decrease of corneal sensitivity.

  20. 20.

    Muller LJ, Vrensen GF, Pels L, Cardozo BN, Willekens B. Architecture of human corneal nerves. Invest Ophthalmol Vis Sci. 1997;38(5):985–94.

  21. 21.

    Muller LJ, Pels L, Vrensen GF. Ultrastructural organization of human corneal nerves. Invest Ophthalmol Vis Sci. 1996;37(4):476–88.

  22. 22.

    Mazlin V, Xiao P, Dalimier E, Grieve K, Irsch K, Sahel JA, et al. In vivo high resolution human corneal imaging using full-field optical coherence tomography. Biomed Opt Express. 2018;9(2):557–68.

  23. 23.

    Erie JC, McLaren JW, Patel SV. Confocal microscopy in ophthalmology. Am J Ophthalmol. 2009;148(5):639–46.

  24. 24.

    Szaflik JP. Comparison of in vivo confocal microscopy of human cornea by white light scanning slit and laser scanning systems. Cornea. 2007;26(4):438–45.

  25. 25.

    Niederer RL, McGhee CN. Clinical in vivo confocal microscopy of the human cornea in health and disease. Prog Retin Eye Res. 2010;29(1):30–58.

  26. 26.

    Masters BR. The scanning laser ophthalmoscope: a new view on the retina. Br J Ophthalmol. 1994;78(2):81.

  27. 27.

    Bo Hnke M, Masters BR, Wa Lti R, Ballif JJ, Chavanne P, Gianotti R, et al. Precision and reproducibility of measurements of human corneal thickness with rapid optical low-coherence reflectometry (OLCR). J Biomed Opt. 1999;4(1):152–6.

  28. 28.

    Bohnke M, Masters BR. Confocal microscopy of the cornea. Prog Retin Eye Res. 1999;18(5):553–628.

  29. 29.

    Bailly N, Sherif ZA, Pleyer U, Rieck P. Confocal microscopy in corneal dystrophies: a comparison between confocal slit scanning (ConfoScan P2) and laser scanning microscopy (Rostock Cornea Modul-HRT II). Klin Monatsbl Augenheilkd. 2006;223(9):735–42.

  30. 30.

    Patel DV, McGhee CN. Quantitative analysis of in vivo confocal microscopy images: a review. Surv Ophthalmol. 2013;58(5):466–75.

  31. 31.

    Vagenas D, Pritchard N, Edwards K, Shahidi AM, Sampson GP, Russell AW, et al. Optimal image sample size for corneal nerve morphometry. Optom Vis Sci. 2012;89(5):812–7.

  32. 32.

    Hosal BM, Ornek N, Zilelioglu G, Elhan AH. Morphology of corneal nerves and corneal sensation in dry eye: a preliminary study. Eye (Lond). 2005;19(12):1276–9.

  33. 33.

    Petroll WM, Robertson DM. In vivo confocal microscopy of the cornea: new developments in image acquisition, reconstruction, and analysis using the HRT-Rostock corneal module. Ocul Surf. 2015;13(3):187–203.

  34. 34.

    Kim J, Markoulli M. Automatic analysis of corneal nerves imaged using in vivo confocal microscopy. Clin Exp Optom. 2018;101(2):147–61.

  35. 35.

    Winter K, Scheibe P, Kohler B, Allgeier S, Guthoff RF, Stachs O. Local variability of parameters for characterization of the corneal subbasal nerve plexus. Curr Eye Res. 2016;41(2):186–98.

  36. 36.

    Efron N, Edwards K, Roper N, Pritchard N, Sampson GP, Shahidi AM, et al. Repeatability of measuring corneal subbasal nerve fiber length in individuals with type 2 diabetes. Eye Contact Lens. 2010;36(5):245–8.

  37. 37.

    Erie JC, McLaren JW, Hodge DO, Bourne WM. The effect of age on the corneal subbasal nerve plexus. Cornea. 2005;24(6):705–9.

  38. 38.

    Grupcheva CN, Wong T, Riley AF, McGhee CN. Assessing the sub-basal nerve plexus of the living healthy human cornea by in vivo confocal microscopy. Clin Exp Ophthalmol. 2002;30(3):187–90.

  39. 39.

    Oliveira-Soto L, Efron N. Morphology of corneal nerves using confocal microscopy. Cornea. 2001;20(4):374–84.

  40. 40.

    Kallinikos P, Berhanu M, O'Donnell C, Boulton AJ, Efron N, Malik RA. Corneal nerve tortuosity in diabetic patients with neuropathy. Invest Ophthalmol Vis Sci. 2004;45(2):418–22.

  41. 41.

    Dehghani C, Pritchard N, Edwards K, Russell AW, Malik RA, Efron N. Fully automated, semiautomated, and manual morphometric analysis of corneal subbasal nerve plexus in individuals with and without diabetes. Cornea. 2014;33(7):696–702.

  42. 42.

    Stave J, Zinser G, Grummer G, Guthoff R. Modified Heidelberg retinal tomograph HRT. Initial results of in vivo presentation of corneal structures. Ophthalmologe. 2002;99(4):276–80.

  43. 43.

    Stave J, Guthoff R. Imaging the tear film and in vivo cornea. Initial results with a modified confocal laser scanning ophthalmoscope. Ophthalmologe. 1998;95(2):104–9.

  44. 44.

    Radhakrishnan S, Rollins AM, Roth JE, Yazdanfar S, Westphal V, Bardenstein DS, et al. Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol. 2001;119(8):1179–85.

  45. 45.

    Izatt JA, Hee MR, Swanson EA, Lin CP, Huang D, Schuman JS, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112(12):1584–9.

  46. 46.

    Xiao P, Fink M, Boccara AC. Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations. Opt Lett. 2016;41(17):3920–3.

  47. 47.

    Xiao P, Fink M, Boccara AC. Adaptive optics full-field optical coherence tomography. J Biomed Opt. 2016;21(12):121505.

  48. 48.

    Optovue RTVue CAM with Corneal Power 510(K) Premarket Notification. Sep 8, 2011. https://www.accessdata.fda.gov/cdrh_docs/pdf11/K111505.pdf. (Accessed 1 Feb 2020).

  49. 49.

    Tahiri Joutei Hassani R, Liang H, El Sanharawi M, Brasnu E, Kallel S, Labbe A, et al. En-face optical coherence tomography as a novel tool for exploring the ocular surface: a pilot comparative study to conventional B-scans and in vivo confocal microscopy. Ocul Surf. 2014;12(4):285–306.

  50. 50.

    • Chen YT, Tsai CY, Chiu YK, Hsu TW, Chen LW, Chen WL, et al. En face and cross-sectional corneal tomograms using sub-micron spatial resolution optical coherence tomography. Sci Rep. 2018;8(1):14349.

  51. 51.

    Brennan NA, Bruce AS. Esthesiometry as an indicator of corneal health. Optom Vis Sci. 1991;68(9):699–702.

  52. 52.

    Boberg-Ans J. On the corneal sensitivity. Acta Ophthalmol. 1956;34(3):149–62.

  53. 53.

    Chao C, Stapleton F, Badarudin E, Golebiowski B. Ocular surface sensitivity repeatability with Cochet-Bonnet esthesiometer. Optom Vis Sci. 2015;92(2):183–9.

  54. 54.

    Golebiowski B, Papas E, Stapleton F. Assessing the sensory function of the ocular surface: implications of use of a non-contact air jet aesthesiometer versus the Cochet-Bonnet aesthesiometer. Exp Eye Res. 2011;92(5):408–13.

  55. 55.

    Murphy PJ, Lawrenson JG, Patel S, Marshall J. Reliability of the non-contact corneal aesthesiometer and its comparison with the Cochet-Bonnet aesthesiometer. Ophthalmic Physiol Opt. 1998;18(6):532–9.

  56. 56.

    Teson M, Calonge M, Fernandez I, Stern ME, Gonzalez-Garcia MJ. Characterization by Belmonte's gas esthesiometer of mechanical, chemical, and thermal corneal sensitivity thresholds in a normal population. Invest Ophthalmol Vis Sci. 2012;53(6):3154–60.

  57. 57.

    The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5(2):75–92.

  58. 58.

    Villani E, Galimberti D, Viola F, Mapelli C, Ratiglia R. The cornea in Sjogren’s syndrome: an in vivo confocal study. Invest Ophthalmol Vis Sci. 2007;48(5):2017–22.

  59. 59.

    Benitez-Del-Castillo JM, Acosta MC, Wassfi MA, Diaz-Valle D, Gegundez JA, Fernandez C, et al. Relation between corneal innervation with confocal microscopy and corneal sensitivity with noncontact esthesiometry in patients with dry eye. Invest Ophthalmol Vis Sci. 2007;48(1):173–81.

  60. 60.

    Tuominen IS, Konttinen YT, Vesaluoma MH, Moilanen JA, Helinto M, Tervo TM. Corneal innervation and morphology in primary Sjogren’s syndrome. Invest Ophthalmol Vis Sci. 2003;44(6):2545–9.

  61. 61.

    Zhang M, Chen J, Luo L, Xiao Q, Sun M, Liu Z. Altered corneal nerves in aqueous tear deficiency viewed by in vivo confocal microscopy. Cornea. 2005;24(7):818–24.

  62. 62.

    De Paiva CS, Pflugfelder SC. Corneal epitheliopathy of dry eye induces hyperesthesia to mechanical air jet stimulation. Am J Ophthalmol. 2004;137(1):109–15.

  63. 63.

    Baron R. Neuropathic pain: a clinical perspective. Handb Exp Pharmacol. 2009;194:3–30.

  64. 64.

    Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci. 2004;24(20):4832–9.

  65. 65.

    Dieckmann G, Goyal S, Hamrah P. Neuropathic corneal pain: approaches for management. Ophthalmology. 2017;124(11S):S34–47.

  66. 66.

    Galor A, Moein HR, Lee C, Rodriguez A, Felix ER, Sarantopoulos KD, et al. Neuropathic pain and dry eye. Ocul Surf. 2018;16(1):31–44.

  67. 67.

    Aggarwal S, Kheirkhah A, Cavalcanti BM, Cruzat A, Colon C, Brown E, et al. Autologous serum tears for treatment of Photoallodynia in patients with corneal neuropathy: efficacy and evaluation with in vivo confocal microscopy. Ocul Surf. 2015;13(3):250–62.

  68. 68.

    Tervo TM, Moilanen JA, Rosenberg ME, Tuominen IS, Valle T, Vesaluoma MH. In vivo confocal microscopy for studying corneal diseases and conditions associated with corneal nerve damage. Adv Exp Med Biol. 2002;506(Pt A):657–65.

  69. 69.

    Rosenberg ME, Tervo TM, Muller LJ, Moilanen JA, Vesaluoma MH. In vivo confocal microscopy after herpes keratitis. Cornea. 2002;21(3):265–9.

  70. 70.

    • Goyal S, Hamrah P. Understanding neuropathic corneal pain--gaps and current therapeutic approaches. Semin Ophthalmol. 2016;31(1–2):59–70 This article precisely summarizes the pathophysiology of neuropathic corneal pain, the way of systematically approach, and current treatment.

  71. 71.

    Rosenthal P, Baran I, Jacobs DS. Corneal pain without stain: is it real? Ocul Surf. 2009;7(1):28–40.

  72. 72.

    •• Dua HS, Said DG, Messmer EM, Rolando M, Benitez-Del-Castillo JM, Hossain PN, et al. Neurotrophic keratopathy. Prog Retin Eye Res. 2018;66:107–31 A comprehensive work that reviews the pathogenesis, the classification, the differential diagnosis and treatment of neurotrophic keratopathy.

  73. 73.

    Belmonte C, Gallar J. Cold thermoreceptors, unexpected players in tear production and ocular dryness sensations. Invest Ophthalmol Vis Sci. 2011;52(6):3888–92.

  74. 74.

    Wilson SE, Ambrosio R. Laser in situ keratomileusis-induced neurotrophic epitheliopathy. Am J Ophthalmol. 2001;132(3):405–6.

  75. 75.

    Heigle TJ, Pflugfelder SC. Aqueous tear production in patients with neurotrophic keratitis. Cornea. 1996;15(2):135–8.

  76. 76.

    Mackie IA. Neuroparalytic keratitis. In: Fraunfelder FT, Roy FH, Grove J, editors. Current ocular therapy. 4th ed. Philadelphia: W. B. Saunders; 1995. p. 452–4.

  77. 77.

    • Mastropasqua L, Nubile M, Lanzini M, Calienno R, Dua HS. In vivo microscopic and optical coherence tomography classification of neurotrophic keratopathy. J Cell Physiol. 2019;234(5):6108–15 A new and sophisticated classification of neurotrophic keratopathy.

  78. 78.

    Yanai R, Nishida T, Chikama T, Morishige N, Yamada N, Sonoda KH. Potential new modes of treatment of neurotrophic keratopathy. Cornea. 2015;34(Suppl 11):S121–7.

  79. 79.

    Nakamura M, Chikama T, Nishida T. Synergistic effect with Phe-Gly-Leu-Met-NH2 of the C-terminal of substance P and insulin-like growth factor-1 on epithelial wound healing of rabbit cornea. Br J Pharmacol. 1999;127(2):489–97.

  80. 80.

    Nishida T, Nakamura M, Ofuji K, Reid TW, Mannis MJ, Murphy CJ. Synergistic effects of substance P with insulin-like growth factor-1 on epithelial migration of the cornea. J Cell Physiol. 1996;169(1):159–66.

  81. 81.

    • Bonini S, Lambiase A, Rama P, Sinigaglia F, Allegretti M, Chao W, et al. Phase II randomized, double-masked, vehicle-controlled trial of recombinant human nerve growth factor for neurotrophic keratitis. Ophthalmology. 2018;125(9):1332–43 An important phase II trial of nerve growth factor for neurotrophic keratitis.

  82. 82.

    Reichard M, Hovakimyan M, Guthoff RF, Stachs O. In vivo visualisation of murine corneal nerve fibre regeneration in response to ciliary neurotrophic factor. Exp Eye Res. 2014;120:20–7.

  83. 83.

    He J, Cortina MS, Kakazu A, Bazan HE. The PEDF neuroprotective domain plus DHA induces corneal nerve regeneration after experimental surgery. Invest Ophthalmol Vis Sci. 2015;56(6):3505–13.

  84. 84.

    Dai Y, Zhao X, Chen P, Yu Y, Wang Y, Xie L. Neuropeptide FF promotes recovery of corneal nerve injury associated with hyperglycemia. Invest Ophthalmol Vis Sci. 2015;56(13):7754–65.

  85. 85.

    Quinto GG, Campos M, Behrens A. Autologous serum for ocular surface diseases. Arq Bras Oftalmol. 2008;71(6 Suppl):47–54.

  86. 86.

    Aggarwal S, Colon C, Kheirkhah A. Hamrah P. Ocul Surf: Efficacy of autologous serum tears for treatment of neuropathic corneal pain; 2019.

  87. 87.

    Lin SJ, Su CC, Chang DCK, Hsi B, Hu FR, Lee SH, et al. Autologous serum therapy in recalcitrant laser-assisted in situ keratomileusis-induced neurotrophic epitheliopathy. Taiwan J Ophthalmol. 2015;5(3):109–13.

  88. 88.

    Ma IH, Chen LW, Tu WH, Lu CJ, Huang CJ, Chen WL. Serum components and clinical efficacies of autologous serum eye drops in dry eye patients with active and inactive Sjogren syndrome. Taiwan J Ophthalmol. 2017;7(4):213–20.

  89. 89.

    Huang CJ, Sun YC, Christopher K, Pai AS, Lu CJ, Hu FR, et al. Comparison of corneal epitheliotrophic capacities among human platelet lysates and other blood derivatives. PLoS One. 2017;12(2):e0171008.

  90. 90.

    Chen LW, Huang CJ, Tu WH, Lu CJ, Sun YC, Lin SY, et al. The corneal epitheliotrophic abilities of lyophilized powder form human platelet lysates. PLoS One. 2018;13(3):e0194345.

  91. 91.

    Terzis JK, Dryer MM, Bodner BI. Corneal neurotization: a novel solution to neurotrophic keratopathy. Plast Reconstr Surg. 2009;123(1):112–20.

  92. 92.

    Elbaz U, Bains R, Zuker RM, Borschel GH, Ali A. Restoration of corneal sensation with regional nerve transfers and nerve grafts: a new approach to a difficult problem. JAMA Ophthalmol. 2014;132(11):1289–95.

  93. 93.

    Fung SSM, Catapano J, Elbaz U, Zuker RM, Borschel GH, Ali A. In vivo confocal microscopy reveals corneal reinnervation after treatment of neurotrophic keratopathy with corneal neurotization. Cornea. 2018;37(1):109–12.

  94. 94.

    Gordon T, Tyreman N, Raji MA. The basis for diminished functional recovery after delayed peripheral nerve repair. J Neurosci. 2011;31(14):5325–34.

  95. 95.

    Fu SY, Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J Neurosci. 1995;15(5 Pt 2):3886–95.

Download references

Author information

Correspondence to Wei-Li Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cornea

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chu, H., Huang, S. & Chen, W. In-Depth Thinking About the Diagnostic Methods and Treatment Strategies for the Corneal Nerves in Ocular Surface Disorders. Curr Ophthalmol Rep 8, 19–27 (2020). https://doi.org/10.1007/s40135-019-00223-y

Download citation

Keywords

  • Corneal nerves
  • Confocal microscopy
  • Optical coherence tomography
  • Esthesiometer
  • Neuropathic pain
  • Neurotrophic keratopathy