Current Ophthalmology Reports

, Volume 7, Issue 3, pp 171–176 | Cite as

Molecular Biomarkers for Glaucoma

  • Gala Beykin
  • Jeffrey L. Goldberg
Diagnosis and Monitoring of Glaucoma (J Kammer, Section Editor)
Part of the following topical collections:
  1. Diagnosis and Monitoring of Glaucoma


Purpose of Review

This article summarizes the current studies on molecular biomarkers with potential implications in diagnosis, prognosis, and response to treatment in patients with glaucoma.

Recent Findings

Important advances have occurred in the understanding of the pathogenesis of glaucomatous neurodegeneration. Protein biomarkers associated with inflammatory, neurodegenerative, and other molecular pathways have been described in glaucoma patients in tear film, aqueous fluid, vitreous fluid, and serum, however, we are still far from having a clear picture of the whole molecular network that relates to the disease and its implications in clinical use.


Although more studies are needed, current and emerging molecular biomarkers candidates in glaucoma may eventually transition into clinical use and contribute to outline the concept of precision medicine and precision health in glaucoma.


Glaucoma Biomarkers Optic nerve degeneration 



We gratefully acknowledge the National Eye Institute (P30-EY026877), the Glaucoma Research Foundation, and Research to Prevent Blindness, Inc.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–7.CrossRefGoogle Scholar
  2. 2.
    Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD, Javitt J, et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch Ophthalmol. 1991;109(8):1090–5.CrossRefGoogle Scholar
  3. 3.
    Biomarkers Definitions Working G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.CrossRefGoogle Scholar
  4. 4.
    Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463–6.CrossRefGoogle Scholar
  5. 5.
    Drucker E, Krapfenbauer K. Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. EPMA J. 2013;4(1):7.CrossRefGoogle Scholar
  6. 6.
    Nakabayashi M. Review of the ischemia hypothesis for ocular hypertension other than congenital glaucoma and closed-angle glaucoma. Ophthalmologica. 2004;218(5):344–9.CrossRefGoogle Scholar
  7. 7.
    Chidlow G, Wood JPM, Casson RJ. Investigations into hypoxia and oxidative stress at the optic nerve head in a rat model of Glaucoma. Front Neurosci. 2017;11:478.CrossRefGoogle Scholar
  8. 8.
    Tezel G. The immune response in glaucoma: a perspective on the roles of oxidative stress. Exp Eye Res. 2011;93(2):178–86.CrossRefGoogle Scholar
  9. 9.
    Shazly TA, Aljajeh M, Latina MA. Autoimmune basis of glaucoma. Semin Ophthalmol. 2011;26(4–5):278–81.CrossRefGoogle Scholar
  10. 10.
    Soto I, Howell GR. The complex role of neuroinflammation in glaucoma. Cold Spring Harb Perspect Med 2014;4(8). pii: a017269.Google Scholar
  11. 11.
    Tezel G. A proteomics view of the molecular mechanisms and biomarkers of glaucomatous neurodegeneration. Prog Retin Eye Res. 2013;35:18–43.CrossRefGoogle Scholar
  12. 12.
    Pavlenko TA, Kim AR, Kurina AY, Davydova NG, Kolomojceva EM, Chesnokova NB, et al. Endothelins and dopamine levels in tears for assessment of neurovascular disorders in glaucoma. Vestn oftalmol. 2018;134(4):41–6.CrossRefGoogle Scholar
  13. 13.
    Pavlenko TA, Chesnokova NB, Davydova HG, Okhotsimskaia TD, Beznos OV, Grigor’ev AV. Level of tear endothelin-1 and plasminogen in patients with glaucoma and proliferative diabetic retinopathy. Vestn oftalmol. 2013;129(4):20–3.CrossRefGoogle Scholar
  14. 14.
    Pasquin S, Sharma M, Gauchat JF. Ciliary neurotrophic factor (CNTF): new facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies. Cytokine Growth Factor Rev. 2015;26(5):507–15.CrossRefGoogle Scholar
  15. 15.
    Flachsbarth K, Kruszewski K, Jung G, Jankowiak W, Riecken K, Wagenfeld L, et al. Neural stem cell-based intraocular administration of ciliary neurotrophic factor attenuates the loss of axotomized ganglion cells in adult mice. Invest Ophthalmol Vis Sci. 2014;55(11):7029–39.CrossRefGoogle Scholar
  16. 16.
    •• Shpak AA, Guekht AB, Druzhkova TA, Kozlova KI, Gulyaeva NV. Ciliary neurotrophic factor in patients with primary open-angle glaucoma and age-related cataract. Mol Vis. 2017;23:799–809 CNTF has been demonstrated in multiple pre-clinical models to enhance survival and regeneration of retinal ganglion cells. A phase 2 randomized clinical trial assessing CNTF as a therapy for glaucoma patients is currently underway ( #NCT02862938). In this paper, CNTF concentrations were studied in the aqueous humor (AH), lacrimal fluid (LF), and blood serum of 145 patients to show CNTF concentration is reduced in the AH and LF of patients with POAG, especially in those with severe visual field loss, and that the CNTF concentration in AH and LF strongly correlates. This phenomenon opens up new options for a non-invasive estimation of the CNTF concentration in AH. PubMedPubMedCentralGoogle Scholar
  17. 17.
    Deckwerth TL, Elliott JL, Knudson CM, Johnson EM Jr, Snider WD, Korsmeyer SJ. BAX is required for neuronal death after trophic factor deprivation and during development. Neuron. 1996;17(3):401–11.CrossRefGoogle Scholar
  18. 18.
    Gregory MS, Hackett CG, Abernathy EF, Lee KS, Saff RR, Hohlbaum AM, et al. Opposing roles for membrane bound and soluble Fas ligand in glaucoma-associated retinal ganglion cell death. PLoS One. 2011;6(3):e17659.CrossRefGoogle Scholar
  19. 19.
    Slepova OS, Frolov MA, Morozova NS, Frolov AM, Lovpache DN. Markers of Fas-mediated apoptosis in primary open-angle glaucoma and opportunities of their pharmacological correction. Vestn oftalmol. 2012;128(4):27–31.PubMedGoogle Scholar
  20. 20.
    Pieragostino D, Bucci S, Agnifili L, Fasanella V, D’Aguanno S, Mastropasqua A, et al. Differential protein expression in tears of patients with primary open angle and pseudoexfoliative glaucoma. Mol BioSyst. 2012;8(4):1017–28.CrossRefGoogle Scholar
  21. 21.
    Borovic D, Bendelic E, Chiselita D. Study of kini-kallikrein and renin--angiotensin systems in patients with primary open angle glaucoma. Oftalmologia. 2009;53(2):61–8.PubMedGoogle Scholar
  22. 22.
    Holappa M, Valjakka J, Vaajanen A. Angiotensin(1-7) and ACE2, “the hot spots” of renin-angiotensin system, detected in the human aqueous humor. Open Ophthalmol J. 2015;9:28–32.CrossRefGoogle Scholar
  23. 23.
    Holappa M, Vapaatalo H, Vaajanen A. Many faces of renin-angiotensin system - focus on eye. Open Ophthalmol J. 2017;11:122–42.CrossRefGoogle Scholar
  24. 24.
    Pieragostino D, Agnifili L, Fasanella V, D’Aguanno S, Mastropasqua R, Di Ilio C, et al. Shotgun proteomics reveals specific modulated protein patterns in tears of patients with primary open angle glaucoma naive to therapy. Mol BioSyst. 2013;9(6):1108–16.CrossRefGoogle Scholar
  25. 25.
    Lopilly Park HY, Kim JH, Lee KM, Park CK. Effect of prostaglandin analogues on tear proteomics and expression of cytokines and matrix metalloproteinases in the conjunctiva and cornea. Exp Eye Res. 2012;94(1):13–21.CrossRefGoogle Scholar
  26. 26.
    Wong TT, Zhou L, Li J, Tong L, Zhao SZ, Li XR, et al. Proteomic profiling of inflammatory signaling molecules in the tears of patients on chronic glaucoma medication. Invest Ophthalmol Vis Sci. 2011;52(10):7385–91.CrossRefGoogle Scholar
  27. 27.
    Malvitte L, Montange T, Vejux A, Baudouin C, Bron AM, Creuzot-Garcher C, et al. Measurement of inflammatory cytokines by multicytokine assay in tears of patients with glaucoma topically treated with chronic drugs. Br J Ophthalmol. 2007;91(1):29–32.CrossRefGoogle Scholar
  28. 28.
    • Martinez-de-la-Casa JM, Perez-Bartolome F, Urcelay E, Santiago JL, Moreno-Montanes J, Arriola-Villalobos P, et al. Tear cytokine profile of glaucoma patients treated with preservative-free or preserved latanoprost. Ocul Surf. 2017;15(4):723–9 This paper found 10 of 27 inflammatory cytokines in tear samples of 79 subjects were significantly higher in patients receiving preserved, but not preservative-free latanoprost, compared with normal controls. This highlights the inflammatory effect of preservatives on the ocular surface. CrossRefGoogle Scholar
  29. 29.
    Reddy S, Sahay P, Padhy D, Sarangi S, Suar M, Modak R, et al. Tear biomarkers in latanoprost and bimatoprost treated eyes. PLoS One. 2018;13(8):e0201740.CrossRefGoogle Scholar
  30. 30.
    Benitez-Del-Castillo J, Cantu-Dibildox J, Sanz-Gonzalez SM, Zanon-Moreno V, Pinazo-Duran MD. Cytokine expression in tears of patients with glaucoma or dry eye disease: a prospective, observational cohort study. Eur J Ophthalmol 2019;29(4):437-43..Google Scholar
  31. 31.
    To CH, Kong CW, Chan CY, Shahidullah M, Do CW. The mechanism of aqueous humour formation. Clin Exp Optom. 2002;85(6):335–49.CrossRefGoogle Scholar
  32. 32.
    Duan X, Lu Q, Xue P, Zhang H, Dong Z, Yang F, et al. Proteomic analysis of aqueous humor from patients with myopia. Mol Vis. 2008;14:370–7.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Duan X, Xue P, Wang N, Dong Z, Lu Q, Yang F. Proteomic analysis of aqueous humor from patients with primary open angle glaucoma. Mol Vis. 2010;16:2839–46.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Bagnis A, Izzotti A, Centofanti M, Sacca SC. Aqueous humor oxidative stress proteomic levels in primary open angle glaucoma. Exp Eye Res. 2012;103:55–62.CrossRefGoogle Scholar
  35. 35.
    • Goyal A, Srivastava A, Sihota R, Kaur J. Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and primary angle closure glaucoma patients. Curr Eye Res. 2014;39(8):823–9 This paper found a significant increase in superoxide dismutase and glutathione peroxidase activities and a significant decrease in vitamins C and E in 90 aqueous humor samples of POAG and PACG patients compared to control patients, suggesting that a significant increase in oxidative stress may play a role in the pathogenesis of POAG and PACG. CrossRefGoogle Scholar
  36. 36.
    Canizales L, Rodriguez L, Rivera C, Martinez A, Mendez F, Castillo A. Low-level expression of SOD1 in peripheral blood samples of patients diagnosed with primary open-angle glaucoma. Biomark Med. 2016;10(12):1218–23.CrossRefGoogle Scholar
  37. 37.
    Junglas B, Kuespert S, Seleem AA, Struller T, Ullmann S, Bosl M, et al. Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork. Am J Pathol. 2012;180(6):2386–403.CrossRefGoogle Scholar
  38. 38.
    Fuchshofer R, Tamm ER. The role of TGF-beta in the pathogenesis of primary open-angle glaucoma. Cell Tissue Res. 2012;347(1):279–90.CrossRefGoogle Scholar
  39. 39.
    Khalef N, Labib H, Helmy H, El Hamid MA, Moemen L, Fahmy I. Levels of cytokines in the aqueous humor of eyes with primary open angle glaucoma, pseudoexfoliation glaucoma and cataract. Electron Physician. 2017;9(2):3833–7.CrossRefGoogle Scholar
  40. 40.
    Ten Berge JC, Fazil Z, van den Born I, Wolfs RCW, Schreurs MWJ, Dik WA, et al. Intraocular cytokine profile and autoimmune reactions in retinitis pigmentosa, age-related macular degeneration, glaucoma and cataract. Acta Ophthalmol 2019;97(2):185-192.Google Scholar
  41. 41.
    Huang W, Chen S, Gao X, Yang M, Zhang J, Li X, et al. Inflammation-related cytokines of aqueous humor in acute primary angle-closure eyes. Invest Ophthalmol Vis Sci. 2014;55(2):1088–94.CrossRefGoogle Scholar
  42. 42.
    Wang Y, Chen S, Liu Y, Huang W, Li X, Zhang X. Inflammatory cytokine profiles in eyes with primary angle-closure glaucoma. Biosci Rep. 2018;38(6):BSR20181411.CrossRefGoogle Scholar
  43. 43.
    •• Kaeslin MA, Killer HE, Fuhrer CA, Zeleny N, Huber AR, Neutzner A. Changes to the aqueous humor proteome during glaucoma. PLoS One. 2016;11(10):e0165314 This study found 87 protein differences in patients with glaucoma versus a control group by quantitative proteome analysis of the aqueous humor. Differentially expressed proteins were found to be involved in cholesterol-related, inflammatory, metabolic, and antioxidant as well as proteolysis-related processes. CrossRefGoogle Scholar
  44. 44.
    Tong Y, Zhou YL, Zheng Y, Biswal M, Zhao PQ, Wang ZY. Analyzing cytokines as biomarkers to evaluate severity of glaucoma. Int J Ophthalmol. 2017;10(6):925–30.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Mirzaei M, Gupta VB, Chick JM, Greco TM, Wu Y, Chitranshi N, et al. Age-related neurodegenerative disease associated pathways identified in retinal and vitreous proteome from human glaucoma eyes. Sci Rep. 2017;7(1):12685.CrossRefGoogle Scholar
  46. 46.
    Walsh MM, Yi H, Friedman J, Cho KI, Tserentsoodol N, McKinnon S, et al. Gene and protein expression pilot profiling and biomarkers in an experimental mouse model of hypertensive glaucoma. Exp Biol Med. 2009;234(8):918–30.CrossRefGoogle Scholar
  47. 47.
    Chen H, Cho KS, Vu THK, Shen CH, Kaur M, Chen G, et al. Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun. 2018;9(1):3209.CrossRefGoogle Scholar
  48. 48.
    Engin KN, Yemisci B, Yigit U, Agachan A, Coskun C. Variability of serum oxidative stress biomarkers relative to biochemical data and clinical parameters of glaucoma patients. Mol Vis. 2010;16:1260–71.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Luo X, Shen YM, Jiang MN, Lou XF, Shen Y. Ocular blood flow autoregulation mechanisms and methods. J Ophthalmol. 2015;2015:864871.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Javadiyan S, Burdon KP, Whiting MJ, Abhary S, Straga T, Hewitt AW, et al. Elevation of serum asymmetrical and symmetrical dimethylarginine in patients with advanced glaucoma. Invest Ophthalmol Vis Sci. 2012;53(4):1923–7.CrossRefGoogle Scholar
  51. 51.
    Malishevskaia TN, Dolgova IG. Options for correction of endothelial dysfunction and oxidative stress in patients with primary open-angle glaucoma. Vestn oftalmol. 2014;130(5):67–70 2-3.PubMedGoogle Scholar
  52. 52.
    Huang P, Qi Y, Xu YS, Liu J, Liao D, Zhang SS, et al. Serum cytokine alteration is associated with optic neuropathy in human primary open angle glaucoma. J Glaucoma. 2010;19(5):324–30.PubMedGoogle Scholar
  53. 53.
    Shpak AA, Guekht AB, Druzhkova TA, Kozlova KI, Gulyaeva NV. Brain-derived neurotrophic factor in patients with primary open-angle Glaucoma and age-related cataract. Curr Eye Res. 2018;43(2):224–31.CrossRefGoogle Scholar
  54. 54.
    Tejeda-Velarde A, Costa-Frossard L, Sainz de la Maza S, Carrasco A, Espino M, Picon C, et al. Clinical usefulness of prognostic biomarkers in optic neuritis. Eur J Neurol. 2018;25(4):614–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gala Beykin
    • 1
  • Jeffrey L. Goldberg
    • 1
  1. 1.Byers Eye Institute at Stanford UniversityPalo AltoUSA

Personalised recommendations