Advertisement

Current Ophthalmology Reports

, Volume 6, Issue 4, pp 207–216 | Cite as

Update on Pediatric Cataract Surgery and the Delphi Panel Paper

  • Stephanie N. Kletke
  • Kamiar Mireskandari
  • Asim Ali
Cataract (CE Starr and A Brissette, Section Editors)
  • 27 Downloads
Part of the following topical collections:
  1. Topical Collection on Cataract

Abstract

Purpose of Review

We review the Delphi panel paper and address topics of non-consensus in the preoperative, intraoperative, and postoperative management of pediatric cataract.

Recent Findings

The Infant Aphakia Treatment Study expanded our understanding of unilateral cataract surgery in infants 6 months and younger. While primary IOL implantation is accepted for children older than 2 years, long-term data is required to determine the optimal age for primary IOL. Primary management of the posterior capsule should consider the child’s unique risks and benefits. Recent benchmarking papers confirmed higher refractive prediction error than adults and there is a need for IOL calculation formulas that cater to the pediatric eye. The impact of next-generation sequencing, bag-in-the-lens, optic capture, and femtosecond laser are yet to be determined.

Summary

Pediatric cataract management is challenging and questions remain on the best approach to some surgical aspects. Future long-term randomized trials will help us move toward consensus globally.

Keywords

Pediatric cataract surgery Delphi process Practice patterns IOL implantation IOL power calculation Primary posterior capsulotomy 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Infant Aphakia Treatment Study G, Lambert SR, Buckley EG, Drews-Botsch C, DuBois L, Hartmann E, et al. The infant aphakia treatment study: design and clinical measures at enrollment. Arch Ophthalmol. 2010;128(1):21–7.  https://doi.org/10.1001/archophthalmol.2009.350.CrossRefGoogle Scholar
  2. 2.
    •• Infant Aphakia Treatment Study G, Lambert SR, Lynn MJ, Hartmann EE, DuBois L, Drews-Botsch C, et al. Comparison of contact lens and intraocular lens correction of monocular aphakia during infancy: a randomized clinical trial of HOTV optotype acuity at age 4.5 years and clinical findings at age 5 years. JAMA Ophthalmol. 2014;132(6):676–82.  https://doi.org/10.1001/jamaophthalmol.2014.531 This manuscript highlights the final visual acuity outcomes of the Infant Aphakic Treatment Study and makes recommendations for treating infants 6 months and younger with unilateral congenital cataract. CrossRefGoogle Scholar
  3. 3.
    •• Plager DA, Lynn MJ, Buckley EG, Wilson ME, Lambert SR. Infant aphakia treatment study G. Complications in the first 5 years following cataract surgery in infants with and without intraocular lens implantation in the infant Aphakia treatment study. Am J Ophthalmol. 2014;158(5):892–8.  https://doi.org/10.1016/j.ajo.2014.07.031 The rate of adverse events at final follow-up for children in the IATS treated with aphakic contact lenses versus primary IOL implantation is reviewed. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Freedman SF, Lynn MJ, Beck AD, Bothun ED, Orge FH, Lambert SR, et al. Glaucoma-related adverse events in the first 5 years after unilateral cataract removal in the infant Aphakia treatment study. JAMA Ophthalmol. 2015;133(8):907–14.  https://doi.org/10.1001/jamaophthalmol.2015.1329.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hartmann EE, Stout AU, Lynn MJ, Yen KG, Kruger SJ, Lambert SR, et al. Stereopsis results at 4.5 years of age in the infant aphakia treatment study. Am J Ophthalmol. 2015;159(1):64–70 e1–2.  https://doi.org/10.1016/j.ajo.2014.09.028.CrossRefPubMedGoogle Scholar
  6. 6.
    Kruger SJ, DuBois L, Becker ER, Morrison D, Wilson L, Wilson ME Jr, et al. Cost of intraocular lens versus contact lens treatment after unilateral congenital cataract surgery in the infant aphakia treatment study at age 5 years. Ophthalmology. 2015;122(2):288–92.  https://doi.org/10.1016/j.ophtha.2014.08.037.CrossRefPubMedGoogle Scholar
  7. 7.
    •• Serafino M, Trivedi RH, Levin AV, Wilson ME, Nucci P, Lambert SR, et al. Use of the Delphi process in paediatric cataract management. The British journal of ophthalmology. 2016;100(5):611–5.  https://doi.org/10.1136/bjophthalmol-2015-307287 Areas of agreement and non-consensus in the management of pediatric cataract were identified using a Delphi panel of experts in the field. Five important questions for future research were highlighted. CrossRefPubMedGoogle Scholar
  8. 8.
    Gillespie RL, O'Sullivan J, Ashworth J, Bhaskar S, Williams S, Biswas S, et al. Personalized diagnosis and management of congenital cataract by next-generation sequencing. Ophthalmology. 2014;121(11):2124–37 e1–2.  https://doi.org/10.1016/j.ophtha.2014.06.006.CrossRefPubMedGoogle Scholar
  9. 9.
    Musleh M, Ashworth J, Black G, Hall G. Improving diagnosis for congenital cataract by introducing NGS genetic testing. BMJ Qual Improv Rep. 2016;5(1). doi: https://doi.org/10.1136/bmjquality.u211094.w4602.
  10. 10.
    • Musleh M, Hall G, Lloyd IC, Gillespie RL, Waller S, Douzgou S, et al. Diagnosing the cause of bilateral paediatric cataracts: comparison of standard testing with a next-generation sequencing approach. Eye (Lond). 2016;30(9):1175–81.  https://doi.org/10.1038/eye.2016.105 This retrospective review demonstrated a higher diagnostic yield of next generation sequencing compared to standard investigations for bilateral pediatric cataract. CrossRefGoogle Scholar
  11. 11.
    Birch EE, Stager DR. The critical period for surgical treatment of dense congenital unilateral cataract. Invest Ophthalmol Vis Sci. 1996;37(8):1532–8.PubMedGoogle Scholar
  12. 12.
    •• Koo EB, VanderVeen DK, Lambert SR. Global practice patterns in the management of infantile cataracts. Eye Contact Lens. 2018. Doi:10.1097/ICL.0000000000000461; This manuscript reports the results of an international survey of pediatric ophthalmologists regarding their cataract surgery practice patterns. Google Scholar
  13. 13.
    Kim DH, Kim JH, Kim SJ, Yu YS. Long-term results of bilateral congenital cataract treated with early cataract surgery, aphakic glasses and secondary IOL implantation. Acta Ophthalmol. 2012;90(3):231–6.  https://doi.org/10.1111/j.1755-3768.2010.01872.x.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Infant Aphakia Treatment Study G, Lambert SR, Buckley EG, Drews-Botsch C, DuBois L, Hartmann EE, et al. A randomized clinical trial comparing contact lens with intraocular lens correction of monocular aphakia during infancy: grating acuity and adverse events at age 1 year. Arch Ophthalmol. 2010;128(7):810–8.  https://doi.org/10.1001/archophthalmol.2010.101.CrossRefGoogle Scholar
  15. 15.
    Plager DA, Lynn MJ, Buckley EG, Wilson ME, Lambert SR, Treatment IA. Study G. Complications, adverse events, and additional intraocular surgery 1 year after cataract surgery in the infant Aphakia treatment study. Ophthalmology. 2011;118(12):2330–4.  https://doi.org/10.1016/j.ophtha.2011.06.017.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bothun ED, Cleveland J, Lynn MJ, Christiansen SP, Vanderveen DK, Neely DE, et al. One-year strabismus outcomes in the infant Aphakia treatment study. Ophthalmology. 2013;120(6):1227–31.  https://doi.org/10.1016/j.ophtha.2012.11.039.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kemmanu V, Rathod P, Rao HL, Muthu S, Jayadev C. Management of cataracts and ectopia lentis in children: practice patterns of pediatric ophthalmologists in India. Indian J Ophthalmol. 2017;65(9):818–25.  https://doi.org/10.4103/ijo.IJO_896_16.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sukhija J, Ram J, Kaur S. Complications in the first 5 years following cataract surgery in infants with and without intraocular lens implantation in the infant aphakia treatment study. Am J Ophthalmol. 2014;158(6):1360–1.  https://doi.org/10.1016/j.ajo.2014.09.018.CrossRefPubMedGoogle Scholar
  19. 19.
    Plager DA, Lynn MJ, Lambert SR, Buckley EG, Wilson ME, Infant Aphakia Treatment Study G. Reply: To Am J Ophthalmol 2014;158(6):1361–1362. doi: https://doi.org/10.1016/j.ajo.2014.09.019.
  20. 20.
    Sueke H, Chandna A. Comments on infant aphakia treatment study 4.5-year results. JAMA Ophthalmol. 2014;132(12):1491–2.  https://doi.org/10.1001/jamaophthalmol.2014.3532.CrossRefPubMedGoogle Scholar
  21. 21.
    Lambert SR, Lynn MJ, Hartmann EE. Infant Aphakia treatment study G. In reply JAMA Ophthalmol. 2014;132(12):1492–3.  https://doi.org/10.1001/jamaophthalmol.2014.3542.CrossRefPubMedGoogle Scholar
  22. 22.
    • Struck MC. Long-term results of pediatric cataract surgery and primary intraocular lens implantation from 7 to 22 months of life. JAMA Ophthalmol. 2015;133(10):1180–3.  https://doi.org/10.1001/jamaophthalmol.2015.2062 This retrospective review of 14 eyes of 10 patients demonstrated a lower rate of adverse events compared to the IATS in children aged 7 to 22 months following primary IOL implantation. CrossRefPubMedGoogle Scholar
  23. 23.
    Mataftsi A, Haidich AB, Kokkali S, Rabiah PK, Birch E, Stager DR Jr, et al. Postoperative glaucoma following infantile cataract surgery: an individual patient data meta-analysis. JAMA Ophthalmol. 2014;132(9):1059–67.  https://doi.org/10.1001/jamaophthalmol.2014.1042.CrossRefPubMedGoogle Scholar
  24. 24.
    Ambroz SC, Toteberg-Harms M, Hanson JVM, Funk J, Barthelmes D, Gerth-Kahlert C. Outcome of pediatric cataract surgeries in a tertiary center in Switzerland. J Ophthalmol. 2018;2018:3230489–10.  https://doi.org/10.1155/2018/3230489.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lim Z, Rubab S, Chan YH, Levin AV. Management and outcomes of cataract in children: the Toronto experience. J AAPOS. 2012;16(3):249–54.  https://doi.org/10.1016/j.jaapos.2011.12.158.CrossRefPubMedGoogle Scholar
  26. 26.
    Bonaparte LA, Trivedi RH, Ramakrishnan V, Wilson ME. Visual acuity and its predictors after surgery for bilateral cataracts in children. Eye (Lond). 2016;30(9):1229–33.  https://doi.org/10.1038/eye.2016.166.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sukhija J, Ram J, Gupta N, Sawhney A, Kaur S. Long-term results after primary intraocular lens implantation in children operated less than 2 years of age for congenital cataract. Indian J Ophthalmol. 2014;62(12):1132–5.  https://doi.org/10.4103/0301-4738.149131.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    •• Solebo AL, Russell-Eggitt I, Cumberland PM, Rahi JS, British Isles Congenital Cataract Interest G. Risks and outcomes associated with primary intraocular lens implantation in children under 2 years of age: the IoLunder2 cohort study. Br J Ophthalmology. 2015;99(11):1471–6.  https://doi.org/10.1136/bjophthalmol-2014-306394 This prospective cohort study assessed visual outcomes and complication rates for primary IOL implantation in unilateral and bilateral cataract surgery for children younger than 2 years. CrossRefGoogle Scholar
  29. 29.
    • Repka MX, Dean TW, Lazar EL, Yen KG, Lenhart PD, Freedman SF, et al. Cataract surgery in children from birth to less than 13 years of age: baseline characteristics of the cohort. Ophthalmology. 2016;123(12):2462–73.  https://doi.org/10.1016/j.ophtha.2016.09.003 A manuscript reporting the baseline characteristics and refractive prediction error for a large, prospective PEDIG registry of children younger than 13 years. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dave H, Phoenix V, Becker ER, Lambert SR. Simultaneous vs sequential bilateral cataract surgery for infants with congenital cataracts: visual outcomes, adverse events, and economic costs. Arch Ophthalmol. 2010;128(8):1050–4.  https://doi.org/10.1001/archophthalmol.2010.136.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Magli A, Forte R, Rombetto L. Long-term outcome of primary versus secondary intraocular lens implantation after simultaneous removal of bilateral congenital cataract. Graefes Arch Clin Exp Ophthalmol. 2013;251(1):309–14.  https://doi.org/10.1007/s00417-012-1979-7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lambert SR, Lynn MJ, DuBois LG, Cotsonis GA, Hartmann EE, Wilson ME, et al. Axial elongation following cataract surgery during the first year of life in the infant Aphakia treatment study. Invest Ophthalmol Vis Sci. 2012;53(12):7539–45.  https://doi.org/10.1167/iovs.12-10285.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lambert SR, Cotsonis G, DuBois L, Wilson ME, Plager DA, Buckley EG, et al. Comparison of the rate of refractive growth in aphakic eyes versus pseudophakic eyes in the infant Aphakia treatment study. J Cataract Refract Surg. 2016;42(12):1768–73.  https://doi.org/10.1016/j.jcrs.2016.09.021.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wilson ME, Trivedi RH, Weakley DR Jr, Cotsonis GA, Lambert SR. Infant Aphakia treatment study G. globe axial length growth at age 5 years in the infant Aphakia treatment study. Ophthalmology. 2017;124(5):730–3.  https://doi.org/10.1016/j.ophtha.2017.01.010.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dahan E, Drusedau MU. Choice of lens and dioptric power in pediatric pseudophakia. J Cataract Refract Surg. 1997;23(Suppl 1):618–23.CrossRefPubMedGoogle Scholar
  36. 36.
    Crouch ER, Crouch ER Jr, Pressman SH. Prospective analysis of pediatric pseudophakia: myopic shift and postoperative outcomes. J AAPOS. 2002;6(5):277–82.CrossRefPubMedGoogle Scholar
  37. 37.
    Vasavada AR, Raj SM, Nihalani B. Rate of axial growth after congenital cataract surgery. Am J Ophthalmol. 2004;138(6):915–24.  https://doi.org/10.1016/j.ajo.2004.06.068.CrossRefPubMedGoogle Scholar
  38. 38.
    Magli A, Forte R, Carelli R, Rombetto L, Magli G. Long-term outcomes of primary intraocular Lens implantation for unilateral congenital cataract. Semin Ophthalmol. 2016;31(6):548–53.  https://doi.org/10.3109/08820538.2015.1009556.CrossRefPubMedGoogle Scholar
  39. 39.
    Valera Cornejo DA, Flores BA. Relationship between preoperative axial length and myopic shift over 3 years after congenital cataract surgery with primary intraocular lens implantation at the National Institute of ophthalmology of Peru, 2007-2011. Clin Ophthalmol. 2018;12:395–9.  https://doi.org/10.2147/OPTH.S152560.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Enyedi LB, Peterseim MW, Freedman SF, Buckley EG. Refractive changes after pediatric intraocular lens implantation. Am J Ophthalmol. 1998;126(6):772–81.CrossRefPubMedGoogle Scholar
  41. 41.
    •• Sachdeva V, Katukuri S, Kekunnaya R, Fernandes M, Ali MH. Validation of guidelines for undercorrection of intraocular lens power in children. Am J Ophthalmol. 2017;174:17–22.  https://doi.org/10.1016/j.ajo.2016.10.017 This study assessed the prediction error at 7 years of age for children who had primary IOL implantation using the Enyedi et al. guidelines for refractive under-correction. CrossRefPubMedGoogle Scholar
  42. 42.
    Lambert SR, Archer SM, Wilson ME, Trivedi RH, del Monte MA, Lynn M. Long-term outcomes of undercorrection versus full correction after unilateral intraocular lens implantation in children. Am J Ophthalmol. 2012;153(4):602–8, 8 e1.  https://doi.org/10.1016/j.ajo.2011.08.046.CrossRefPubMedGoogle Scholar
  43. 43.
    Nihalani BR, VanderVeen DK. Comparison of intraocular lens power calculation formulae in pediatric eyes. Ophthalmology. 2010;117(8):1493–9.  https://doi.org/10.1016/j.ophtha.2009.12.031.CrossRefPubMedGoogle Scholar
  44. 44.
    Trivedi RH, Wilson ME. Axial length measurements by contact and immersion techniques in pediatric eyes with cataract. Ophthalmology. 2011;118(3):498–502.  https://doi.org/10.1016/j.ophtha.2010.06.042.CrossRefPubMedGoogle Scholar
  45. 45.
    Vanderveen DK, Trivedi RH, Nizam A, Lynn MJ, Lambert SR. Infant Aphakia treatment study G. predictability of intraocular lens power calculation formulae in infantile eyes with unilateral congenital cataract: results from the infant Aphakia treatment study. Am J Ophthalmol. 2013;156(6):1252–60 e2.  https://doi.org/10.1016/j.ajo.2013.07.014.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Vasavada V, Shah SK, Vasavada VA, Vasavada AR, Trivedi RH, Srivastava S, et al. Comparison of IOL power calculation formulae for pediatric eyes. Eye (Lond). 2016;30(9):1242–50.  https://doi.org/10.1038/eye.2016.171.CrossRefGoogle Scholar
  47. 47.
    Trivedi RH, Wilson ME, Reardon W. Accuracy of the Holladay 2 intraocular lens formula for pediatric eyes in the absence of preoperative refraction. J Cataract Refract Surg. 2011;37(7):1239–43.  https://doi.org/10.1016/j.jcrs.2011.01.021.CrossRefPubMedGoogle Scholar
  48. 48.
    Kekunnaya R, Gupta A, Sachdeva V, Rao HL, Vaddavalli PK, Om PV. Accuracy of intraocular lens power calculation formulae in children less than two years. Am J Ophthalmol. 2012;154(1):13–9 e2.  https://doi.org/10.1016/j.ajo.2011.11.031.CrossRefPubMedGoogle Scholar
  49. 49.
    •• Nihalani BR, VanderVeen DK. Benchmarks for outcome indicators in pediatric cataract surgery. Eye (Lond). 2017;31(3):417–21.  https://doi.org/10.1038/eye.2016.240 This retrospective study established benchmarks for visual and refractive outcome indicators for children older than 2 years following bilateral cataract surgery and primary IOL implantation. CrossRefGoogle Scholar
  50. 50.
    Thanapaisal S, Wongwai P, Phanphruk W, Suwannaraj S. Accuracy of intraocular lens calculation by SRK/T formula in pediatric cataracts. J Med Assoc Thail. 2015;98(Suppl 7):S198–203.Google Scholar
  51. 51.
    Ashworth JL, Maino AP, Biswas S, Lloyd IC. Refractive outcomes after primary intraocular lens implantation in infants. Br J Ophthalmol. 2007;91(5):596–9.  https://doi.org/10.1136/bjo.2006.108571.CrossRefPubMedGoogle Scholar
  52. 52.
    Bhusal S, Ram J, Sukhija J, Pandav SS, Kaushik S. Comparison of the outcome of implantation of hydrophobic acrylic versus silicone intraocular lenses in pediatric cataract: prospective randomized study. Can J Ophthalmol. 2010;45(5):531–6.  https://doi.org/10.3129/i10-045.CrossRefPubMedGoogle Scholar
  53. 53.
    Wilson ME, Elliott L, Johnson B, Peterseim MM, Rah S, Werner L, et al. AcrySof acrylic intraocular lens implantation in children: clinical indications of biocompatibility. J AAPOS. 2001;5(6):377–80.CrossRefPubMedGoogle Scholar
  54. 54.
    Wilson ME, Trivedi RH. Choice of intraocular lens for pediatric cataract surgery: survey of AAPOS members. J Cataract Refract Surg. 2007;33(9):1666–8.  https://doi.org/10.1016/j.jcrs.2007.05.016.CrossRefPubMedGoogle Scholar
  55. 55.
    Wilson ME Jr, Trivedi RH, Buckley EG, Granet DB, Lambert SR, Plager DA, et al. ASCRS white paper. Hydrophobic acrylic intraocular lenses in children. J Cataract Refract Surg. 2007;33(11):1966–73.  https://doi.org/10.1016/j.jcrs.2007.06.047.CrossRefPubMedGoogle Scholar
  56. 56.
    Werner L. Glistenings and surface light scattering in intraocular lenses. J Cataract Refract Surg. 2010;36(8):1398–420.  https://doi.org/10.1016/j.jcrs.2010.06.003.CrossRefPubMedGoogle Scholar
  57. 57.
    Lapid-Gortzak R, van der Meulen IJ, Jellema HM, Mourits MP, Nieuwendaal CP. Seven-year follow-up of unilateral multifocal pseudophakia in a child. Int Ophthalmol. 2017;37(1):267–70.  https://doi.org/10.1007/s10792-016-0232-5.CrossRefPubMedGoogle Scholar
  58. 58.
    Kleinmann G, Zaugg B, Apple DJ, Bleik J. Pediatric cataract surgery with hydrophilic acrylic intraocular lens. J AAPOS. 2013;17(4):367–70.  https://doi.org/10.1016/j.jaapos.2013.04.007.CrossRefPubMedGoogle Scholar
  59. 59.
    Adhikari S, Shrestha UD. Pediatric cataract surgery with hydrophilic acrylic intraocular lens implantation in Nepalese children. Clin Ophthalmol. 2018;12:7–11.  https://doi.org/10.2147/OPTH.S149806.CrossRefPubMedGoogle Scholar
  60. 60.
    Tassignon MJ, De Veuster I, Godts D, Kosec D, Van den Dooren K, Gobin L. Bag-in-the-lens intraocular lens implantation in the pediatric eye. J Cataract Refract Surg. 2007;33(4):611–7.  https://doi.org/10.1016/j.jcrs.2006.12.016.CrossRefPubMedGoogle Scholar
  61. 61.
    • Van Looveren J, Ni Dhubhghaill S, Godts D, Bakker E, De Veuster I, Mathysen DG, et al. Pediatric bag-in-the-lens intraocular lens implantation: long-term follow-up. J Cataract Refract Surg. 2015;41(8):1685–92.  https://doi.org/10.1016/j.jcrs.2014.12.057 The bag-in-the-lens IOL implantation technique was associated with low rates of visual axis opacification at mean 78 month follow up. CrossRefPubMedGoogle Scholar
  62. 62.
    Raina UK, Gupta A, Bhambhwani V, Bhushan G, Seth A, Ghosh B. The optical performance of spherical and aspheric intraocular lenses in pediatric eyes: a comparative study. J Pediatr Ophthalmol Strabismus. 2015;52(4):232–8.  https://doi.org/10.3928/01913913-20150520-03.CrossRefPubMedGoogle Scholar
  63. 63.
    Jacobi PC, Dietlein TS, Konen W. Multifocal intraocular lens implantation in pediatric cataract surgery. Ophthalmology. 2001;108(8):1375–80.CrossRefPubMedGoogle Scholar
  64. 64.
    Ram J, Agarwal A, Kumar J, Gupta A. Bilateral implantation of multifocal versus monofocal intraocular lens in children above 5 years of age. Graefes Arch Clin Exp Ophthalmol. 2014;252(3):441–7.  https://doi.org/10.1007/s00417-014-2571-0.CrossRefPubMedGoogle Scholar
  65. 65.
    Hunter DG. Multifocal intraocular lenses in children. Ophthalmology. 2001;108(8):1373–4.CrossRefPubMedGoogle Scholar
  66. 66.
    Rychwalski PJ. Multifocal IOL implantation in children: is the future clear? J Cataract Refract Surg. 2010;36(12):2019–21.  https://doi.org/10.1016/j.jcrs.2010.10.009.CrossRefPubMedGoogle Scholar
  67. 67.
    Wilson ME, Trivedi RH, Burger BM. Eye growth in the second decade of life: implications for the implantation of a multifocal intraocular lens. Trans Am Ophthalmol Soc. 2009;107:120–4.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Nischal KK. Two-incision push-pull capsulorhexis for pediatric cataract surgery. J Cataract Refract Surg. 2002;28(4):593–5.CrossRefPubMedGoogle Scholar
  69. 69.
    Hamada S, Low S, Walters BC, Nischal KK. Five-year experience of the 2-incision push-pull technique for anterior and posterior capsulorrhexis in pediatric cataract surgery. Ophthalmology. 2006;113(8):1309–14.  https://doi.org/10.1016/j.ophtha.2006.03.057.CrossRefPubMedGoogle Scholar
  70. 70.
    Kesarwani SS, Sahu SK. Push-pull technique of capsulorhexis for fibrous plaques on anterior capsules in pediatric cataract surgery. J AAPOS. 2011;15(5):493–4.  https://doi.org/10.1016/j.jaapos.2011.06.005.CrossRefPubMedGoogle Scholar
  71. 71.
    Mohammadpour M. Four-incision capsulorhexis in pediatric cataract surgery. J Cataract Refract Surg. 2007;33(7):1155–7.  https://doi.org/10.1016/j.jcrs.2007.02.042.CrossRefPubMedGoogle Scholar
  72. 72.
    Wilson ME Jr, Trivedi RH, Bartholomew LR, Pershing S. Comparison of anterior vitrectorhexis and continuous curvilinear capsulorhexis in pediatric cataract and intraocular lens implantation surgery: a 10-year analysis. J AAPOS. 2007;11(5):443–6.  https://doi.org/10.1016/j.jaapos.2007.03.012.CrossRefPubMedGoogle Scholar
  73. 73.
    Ilhan O, Coskun M, Keskin U, Ayintap E, Ilhan N, Tuzcu E, et al. Dual approach using vitrectorhexis combined with anterior vitrectomy in pediatric cataract surgery. ISRN Ophthalmol. 2013;2013:124754–5.  https://doi.org/10.1155/2013/124754.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bartholomew LR, Wilson ME Jr, Trivedi RH. Pediatric anterior capsulotomy preferences of cataract surgeons worldwide: comparison of 1993, 2001, and 2003 surveys. J Cataract Refract Surg. 2007;33(5):893–900.  https://doi.org/10.1016/j.jcrs.2007.03.006.CrossRefPubMedGoogle Scholar
  75. 75.
    Lin H, Tan X, Lin Z, Chen J, Luo L, Wu X, et al. Capsular outcomes differ with capsulorhexis sizes after pediatric cataract surgery: a randomized controlled trial. Sci Rep. 2015;5:16227.  https://doi.org/10.1038/srep16227.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Fridman G, Rizzuti AE, Liao J, Rolain M, Deutsch JA, Kaufman SC. Trypan blue as a surgical adjunct in pediatric cataract surgery. J Cataract Refract Surg. 2016;42(12):1774–8.  https://doi.org/10.1016/j.jcrs.2016.10.012.CrossRefPubMedGoogle Scholar
  77. 77.
    Saini JS, Jain AK, Sukhija J, Gupta P, Saroha V. Anterior and posterior capsulorhexis in pediatric cataract surgery with or without trypan blue dye: randomized prospective clinical study. J Cataract Refract Surg. 2003;29(9):1733–7.CrossRefPubMedGoogle Scholar
  78. 78.
    Dick HB, Schultz T. Femtosecond laser-assisted cataract surgery in infants. J Cataract Refract Surg. 2013;39(5):665–8.  https://doi.org/10.1016/j.jcrs.2013.02.032.CrossRefPubMedGoogle Scholar
  79. 79.
    • Dick HB, Schelenz D, Schultz T. Femtosecond laser-assisted pediatric cataract surgery: Bochum formula. J Cataract Refract Surg. 2015;41(4):821–6.  https://doi.org/10.1016/j.jcrs.2014.08.032 The authors present an age-dependent correction formula (Bochum formula) to account for enlargement of the anterior capsulotomy relative to target size with femto-second laser. CrossRefPubMedGoogle Scholar
  80. 80.
    Fung SSM, Brookes J, Wilkins MR, Adams GGW. Mobile femtosecond laser platform for pediatric cataract surgery. Eur J Ophthalmol. 2018;28(2):246–50.  https://doi.org/10.5301/ejo.5001055.CrossRefPubMedGoogle Scholar
  81. 81.
    • Zhao YE, Gong XH, Zhu XN, Li HM, Tu MJ, Coursey TG, et al. Long-term outcomes of ciliary sulcus versus capsular bag fixation of intraocular lenses in children: an ultrasound biomicroscopy study. PLoS One. 2017;12(3):e0172979.  https://doi.org/10.1371/journal.pone.0172979 A retrospective study that used ultrasound biomicroscopy to assess the long-term outcomes of IOL fixation in the ciliary sulcus. This placement was found to increase IOL tilt and decentration, as well as crowd the anterior segment. CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Epley KD, Shainberg MJ, Lueder GT, Tychsen L. Pediatric secondary lens implantation in the absence of capsular support. Journal of American Association for Pediatric Ophthalmology and Strabismus. 2001;5(5):301–6.  https://doi.org/10.1067/mpa.2001.117567.CrossRefPubMedGoogle Scholar
  83. 83.
    Lin HT, Long EP, Chen JJ, Liu ZZ, Lin ZL, Cao QZ, et al. Timing and approaches in congenital cataract surgery: a four-year, two-layer randomized controlled trial. Int J Ophthalmol. 2017;10(12):1835–43.  https://doi.org/10.18240/ijo.2017.12.08.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Elkin ZP, Piluek WJ, Fredrick DR. Revisiting secondary capsulotomy for posterior capsule management in pediatric cataract surgery. J AAPOS. 2016;20(6):506–10.  https://doi.org/10.1016/j.jaapos.2016.06.011.CrossRefPubMedGoogle Scholar
  85. 85.
    Batur M, Gul A, Seven E, Can E, Yasar T. Posterior capsular opacification in preschool- and school-age patients after pediatric cataract surgery without posterior capsulotomy. Turk J Ophthalmol. 2016;46(5):205–8.  https://doi.org/10.4274/tjo.24650.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Koch DD, Kohnen T. A retrospective comparison of techniques to prevent secondary cataract formation following posterior chamber intraocular lens implantation in infants and children. Trans Am Ophthalmol Soc. 1997;95:351–60 discussion 61-5.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Trivedi RH, Wilson ME. Posterior capsule opacification in pediatric eyes with and without traumatic cataract. J Cataract Refract Surg. 2015;41(7):1461–4.  https://doi.org/10.1016/j.jcrs.2014.10.034.CrossRefPubMedGoogle Scholar
  88. 88.
    Kugelberg M, Kugelberg U, Bobrova N, Tronina S, Zetterstrom C. After-cataract in children having cataract surgery with or without anterior vitrectomy implanted with a single-piece AcrySof IOL. J Cataract Refract Surg. 2005;31(4):757–62.  https://doi.org/10.1016/j.jcrs.2004.08.044.CrossRefPubMedGoogle Scholar
  89. 89.
    Trivedi RH, Wilson ME Jr, Bartholomew LR, Lal G, Peterseim MM. Opacification of the visual axis after cataract surgery and single acrylic intraocular lens implantation in the first year of life. J AAPOS. 2004;8(2):156–64.  https://doi.org/10.1016/S1091853103003197.CrossRefPubMedGoogle Scholar
  90. 90.
    Bar-Sela SM, Har-Noy NB, Spierer A. Secondary membrane formation after cataract surgery with primary intraocular lens implantation in children. Int Ophthalmol. 2014;34(4):767–72.  https://doi.org/10.1007/s10792-013-9873-9.CrossRefPubMedGoogle Scholar
  91. 91.
    Hazirolan DO, Altiparmak UE, Aslan BS, Duman S. Vitrectorhexis versus forceps capsulorhexis for anterior and posterior capsulotomy in congenital cataract surgery. J Pediatr Ophthalmol Strabismus. 2009;46(2):104–7.CrossRefPubMedGoogle Scholar
  92. 92.
    Kochgaway L, Biswas P, Paul A, Sinha S, Biswas R, Maity P, et al. Vitrectorhexis versus forceps posterior capsulorhexis in pediatric cataract surgery. Indian J Ophthalmol. 2013;61(7):361–4.  https://doi.org/10.4103/0301-4738.101066.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    • Rastogi A, Mishra M, Goel Y, Thacker P, Kamlesh. Comparative study of 25- versus 20-gauge pars plana capsulotomy and vitrectomy in pediatric cataract surgery. Int Ophthalmol. 2018;38(1):157–161. doi: https://doi.org/10.1007/s10792-016-0438-6. This comparative study discusses outcomes following pars plana capsulotomy and vitrectomy using 25- and 20-gauge systems for pediatric cataract surgery.
  94. 94.
    • Raina UK, Bhambhwani V, Gupta A, Bhushan G, Seth A, Ghosh B. Comparison of transcorneal and pars plana routes in pediatric cataract surgery in infants using a 25-gauge vitrectomy system. J Pediatr Ophthalmol Strabismus. 2016;53(2):105–12.  https://doi.org/10.3928/01913913-20160208-01 25-gauge posterior vitrectorhexis and anterior vitrectomy via a pars plana or transcorneal approach were compared at 1 year follow up. CrossRefPubMedGoogle Scholar
  95. 95.
    Matalia J, Anaspure H, Shetty BK, Matalia H. Intraoperative usefulness and postoperative results of the endoilluminator for performing primary posterior capsulectomy and anterior vitrectomy during pediatric cataract surgery. Eye (Lond). 2014;28(8):1008–13.  https://doi.org/10.1038/eye.2014.136.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Lotfy A, Abdelrahman A. Trypan blue-assisted posterior capsulorhexis in pediatric cataract surgery. Clin Ophthalmol. 2017;11:219–22.  https://doi.org/10.2147/OPTH.S123150.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Tsai TH, Tsai CY, Huang JY, Hu FR. Outcomes of pediatric cataract surgery with triamcinolone-assisted vitrectomy. J Formos Med Assoc. 2017;116(12):940–5.  https://doi.org/10.1016/j.jfma.2017.01.009.CrossRefPubMedGoogle Scholar
  98. 98.
    Allam G, Ellakkany R, Ellayeh A, Mohsen T, Abouelkheir HE, Gaafar W. Outcome of pediatric cataract surgery with intraocular injection of triamcinolone acetonide: randomized controlled trial. Eur J Ophthalmol. 2018;1120672117754168:112067211775416.  https://doi.org/10.1177/1120672117754168.CrossRefGoogle Scholar
  99. 99.
    • Zhou HW, Zhou F. A meta-analysis on the clinical efficacy and safety of optic capture in pediatric cataract surgery. Int J Ophthalmol. 2016;9(4):590–6.  https://doi.org/10.18240/ijo.2016.04.20 A meta-analysis of 10 studies involving 282 eyes that demonstrated reduced visual axis opacification and IOL decentration with the optic capture technique. CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    • Vasavada AR, Vasavada V, Shah SK, Trivedi RH, Vasavada VA, Vasavada SA, et al. Postoperative outcomes of intraocular lens implantation in the bag versus posterior optic capture in pediatric cataract surgery. J Cataract Refract Surg. 2017;43(9):1177–83.  https://doi.org/10.1016/j.jcrs.2017.07.022 This manuscript reports the findings of a prospective randomized trial involving 61 children comparing pediatric cataract surgery with IOL implantation in-the-bag and anterior vitrectomy to optic capture of the same IOL without anterior vitrectomy. CrossRefPubMedGoogle Scholar
  101. 101.
    Cicik ME, Dogan C, Bolukbasi S, Cinhuseyinoglu MN, Arslan OS. Comparison of two intraocular Lens implantation techniques in pediatric cataract surgery in terms of postoperative complications. Balkan Med J. 2018;35(2):186–90.  https://doi.org/10.4274/balkanmedj.2017.1504.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Gradin D, Mundia D. Effect of intracameral cefuroxime on fibrinous uveitis after pediatric cataract surgery. J Pediatr Ophthalmol Strabismus. 2011;48(1):45–9.  https://doi.org/10.3928/01913913-20100420-03.CrossRefPubMedGoogle Scholar
  103. 103.
    Bowen RC, Zhou AX, Bondalapati S, Lawyer TW, Snow KB, Evans PR, et al. Comparative analysis of the safety and efficacy of intracameral cefuroxime, moxifloxacin and vancomycin at the end of cataract surgery: a meta-analysis. Br J Ophthalmol. 2018;102:1268–76.  https://doi.org/10.1136/bjophthalmol-2017-311051.CrossRefPubMedGoogle Scholar
  104. 104.
    • Gharaibeh AM, Mezer E, Ospina LH, Wygnanski-Jaffe T. Endophthalmitis following pediatric cataract surgery: an international pediatric ophthalmology and strabismus council global perspective. J Pediatr Ophthalmol Strabismus. 2018;55(1):23–9.  https://doi.org/10.3928/01913913-20170823-02 This manuscript summarizes the results of a survey distributed to American Association for Pediatric Ophthalmology and Strabismus members regarding their experiences with endophthalmitis following pediatric cataract surgery. CrossRefPubMedGoogle Scholar
  105. 105.
    Dixit NV, Shah SK, Vasavada V, Vasavada VA, Praveen MR, Vasavada AR, et al. Outcomes of cataract surgery and intraocular lens implantation with and without intracameral triamcinolone in pediatric eyes. J Cataract Refract Surg. 2010;36(9):1494–8.  https://doi.org/10.1016/j.jcrs.2010.03.040.CrossRefPubMedGoogle Scholar
  106. 106.
    Mataftsi A, Dabbagh A, Moore W, Nischal KK. Evaluation of whether intracameral dexamethasone predisposes to glaucoma after pediatric cataract surgery. J Cataract Refract Surg. 2012;38(10):1719–23.  https://doi.org/10.1016/j.jcrs.2012.05.034.CrossRefPubMedGoogle Scholar
  107. 107.
    • Wilson ME, Lambert SR, Plager DA, VanderVeen D, Roarty J, O'Halloran H. Difluprednate versus prednisolone acetate for inflammation following cataract surgery in pediatric patients: a randomized safety and efficacy study. Eye (Lond). 2017;31(3):506–7.  https://doi.org/10.1038/eye.2016.244 A phase 3B multicentre, randomized trial comparing the safety and efficacy of post-operative regimens of difluprednate 0.05% to prednisolone 1%. CrossRefGoogle Scholar
  108. 108.
    Evereklioglu C, Ilhan O. Do non-steroidal anti-inflammatory drugs delay posterior capsule opacification after phacoemulsification in children? A randomized, prospective controlled trial. Curr Eye Res. 2011;36(12):1139–47.  https://doi.org/10.3109/02713683.2011.609304.CrossRefPubMedGoogle Scholar
  109. 109.
    Ventura MC, Ventura BV, Ventura CV, Ventura LO, Arantes TE, Nose W. Outcomes of congenital cataract surgery: intraoperative intracameral triamcinolone injection versus postoperative oral prednisolone. J Cataract Refract Surg. 2014;40(4):601–8.  https://doi.org/10.1016/j.jcrs.2013.09.011.CrossRefPubMedGoogle Scholar
  110. 110.
    Trivedi RH, Lambert SR, Lynn MJ, Wilson ME. Infant Aphakia treatment study G. the role of preoperative biometry in selecting initial contact lens power in the infant Aphakia treatment study. J AAPOS. 2014;18(3):251–4.  https://doi.org/10.1016/j.jaapos.2014.01.012.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Trivedi RH, Wilson ME. Selection of an initial contact lens power for infantile cataract surgery without primary intraocular lens implantation. Ophthalmology. 2013;120(10):1973–6.  https://doi.org/10.1016/j.ophtha.2013.03.013.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Russell B, Ward MA, Lynn M, Dubois L, Lambert SR. Infant Aphakia treatment study G. the infant aphakia treatment study contact lens experience: one-year outcomes. Eye Contact Lens. 2012;38(4):234–9.  https://doi.org/10.1097/ICL.0b013e3182562dc0.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    •• Lambert SR, Kraker RT, Pineles SL, Hutchinson AK, Wilson LB, Galvin JA, et al. Contact lens correction of Aphakia in children: a report by the American Academy of ophthalmology. Ophthalmology. 2018.  https://doi.org/10.1016/j.ophtha.2018.03.014 This report summarizes a literature review on the outcomes of silicone elastomer and rigid gas permeable contact lenses for the management of pediatric aphakia.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Stephanie N. Kletke
    • 1
  • Kamiar Mireskandari
    • 1
    • 2
  • Asim Ali
    • 1
    • 2
  1. 1.Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoCanada
  2. 2.Department of Ophthalmology and Vision SciencesThe Hospital for Sick ChildrenTorontoCanada

Personalised recommendations