Advertisement

Current Ophthalmology Reports

, Volume 4, Issue 4, pp 244–251 | Cite as

Intraoperative Optical Coherence Tomography in Lamellar Keratoplasties: Indications and Outcomes

  • Sebastian SiebelmannEmail author
  • Mario Matthaei
  • Philipp Steven
  • Claus Cursiefen
Corneal Transplantation (P. Hamrah, Section Editor)
  • 47 Downloads
Part of the following topical collections:
  1. Corneal Transplantation

Abstract

Purpose of Review

Lamellar keratoplasties are evolving techniques to selectively replace diseased or opacified layers of the cornea. In recent years, the popularity of lamellar keratoplasties, especially Descemet membrane endothelial keratoplasty, Descemet stripping-automated endothelial keratoplasty and deep anterior lamellar keratoplasty, increased dramatically, since lamellar surgeries reduce intra- and postoperative complications and achieve faster visual recovery. Nonetheless, the surgical procedures are delicate.

Recent Findings

Novel imaging techniques, as intraoperative optical coherence tomography (OCT), may substantially help standardize these procedures to even further reduce intra- and postoperative complications and potentially improve outcome.

Summary

The present review summarizes the current literature regarding the use of intraoperative OCT during lamellar keratoplasties and its effect on postoperative outcome.

Keywords

Intraoperative optical coherence tomography iOCT DMEK DALK DSAEK Lamellar keratoplasties 

Notes

Acknowledgments

Kyriacos Athanasiou reports grants from NIH during the conduct of the study. Sebastian Siebelmann received a travel grant from Haag Streit Surgical.

Financial Support

DFG FOR 2240 “(Lymph)Angiogenesis And Cellular Immunity In Inflammatory Diseases Of The Eye” (PS, CC, SS; www.for2240.de); EU COST BM 1302 (BB, CC, SS); EU ARREST BLINDNESS (CC, PS).

Compliance with Ethical Guidelines

Disclosure

Jerry Hu, Natalia Vapniarsky and Ashkan Aryaei declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Steven P, Le Blanc C, Velten K, Lankenau E, Krug M, Oelckers S, et al. Optimizing Descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography. JAMA Ophthalmol. 2013;131(9):1135–42.CrossRefPubMedGoogle Scholar
  2. 2.
    Steven P, Le Blanc C, Lankenau E, Krug M, Oelckers S, Heindl LM, et al. Optimising deep anterior lamellar keratoplasty (DALK) using intraoperative online optical coherence tomography (iOCT). Br J Ophthalmol. 2014;. doi: 10.1136/bjophthalmol-2013-304585.PubMedCentralGoogle Scholar
  3. 3.
    Siebelmann S, Steven P, Hos D, Lankenau E, Bachmann B, Cursiefen C. Advantages of microscope-integrated intraoperative online optical coherence tomography: usage in Boston keratoprosthesis type I surgery. J Biomed Opt. 2016;21(1):016005.CrossRefGoogle Scholar
  4. 4.
    Siebelmann S, Cursiefen C, Lappas A, Dietlein T. Intraoperative optical coherence tomography enables noncontact imaging during canaloplasty. J Glaucoma. 2016;25:236–8.CrossRefPubMedGoogle Scholar
  5. 5.
    • Siebelmann S, Hermann M, Dietlein T, Bachmann B, Steven P, Cursiefen C. Intraoperative optical coherence tomography in children with anterior segment anomalies. Ophthalmology. 2015;122:2582–4. This study exemplifies the many possibilities of intraoperative, microscope-integrated OCT for examinations of newborn and children under general anaesthesia. Google Scholar
  6. 6.
    Ehlers JP, Dupps WJ, Kaiser PK, Goshe J, Singh RP, Petkovsek D et al. The prospective intraoperative and perioperative ophthalmic imaging with optical coherence tomography (PIONEER) study: 2-year results. Am J Ophthalmol. 2014;158(5):999–1007, e1.Google Scholar
  7. 7.
    • Ehlers JP, Goshe J, Dupps WJ, Kaiser PK, Singh RP, Gans R et al. Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: the DISCOVER study RESCAN results. JAMA Ophthalmol. 2015;133(10):1124–32. Profound prospective study with more than 200 patients, illustrating several possible applications for intraoperative OCT. Google Scholar
  8. 8.
    Siebelmann S, Steven P, Cursiefen C. Intraoperative optical coherence tomography: ocular surgery on a higher level or just nice pictures? JAMA Ophthalmol. 2015;133(10):1133–4.CrossRefPubMedGoogle Scholar
  9. 9.
    Riss S, Heindl LM, Bachmann BO, Kruse FE, Cursiefen C. Pentacam-based big bubble deep anterior lamellar keratoplasty in patients with keratoconus. Cornea. 2012;31(6):627–32.CrossRefPubMedGoogle Scholar
  10. 10.
    Riss S, Heindl LM, Bachmann BO, Kruse FE, Cursiefen C. Microbubble incision as a new rescue technique for big-bubble deep anterior lamellar keratoplasty with failed bubble formation. Cornea. 2013;32(2):125–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Hoerster R, Stanzel TP, Bachmann BO, Siebelmann S, Felsch M, Cursiefen C. Intensified topical steroids as prophylaxis for macular edema after posterior lamellar keratoplasty combined with cataract surgery. Am J Ophthalmol. 2015;163:174–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Stanzel TP, Ersoy L, Sansanayudh W, Felsch M, Dietlein T, Bachmann B, et al. Immediate postoperative intraocular pressure changes after anterior chamber air fill in Descemet membrane endothelial keratoplasty. Cornea. 2016;35(1):14–9.CrossRefPubMedGoogle Scholar
  13. 13.
    • Geerling G, Müller M, Winter C, Hoerauf H, Oelckers S, Laqua H et al. Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery. Arch Ophthalmol. 2005;123(2):253–7. First study on intraoperative OCT in Ophthalmology in general.Google Scholar
  14. 14.
    Arslan OS, Ünal M, Tuncer I, Yücel I. Deep anterior lamellar keratoplasty using big-bubble technique for treatment of corneal stromal scars. Cornea. 2011;30(6):629–33.CrossRefPubMedGoogle Scholar
  15. 15.
    Au J, Goshe J, Dupps WJ Jr, Srivastava SK, Ehlers JP. Intraoperative optical coherence tomography for enhanced depth visualization in deep anterior lamellar keratoplasty from the PIONEER study. Cornea. 2015;34(9):1039–43.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    De Benito-Llopis L, Mehta JS, Angunawela RI, Ang M, Tan DT. Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior lamellar keratoplasty. Am J Ophthalmol. 2014;157(2):334–41. e3.Google Scholar
  17. 17.
    Ang M, Dubis AM, Wilkins MR. Descemet membrane endothelial keratoplasty: intraoperative and postoperative imaging spectral-domain optical coherence tomography. Case Rep Ophthalmol Med. 2015. doi: 10.1155/2015/506251.PubMedGoogle Scholar
  18. 18.
    Cost B, Goshe JM, Srivastava S, Ehlers JP. Intraoperative optical coherence tomography-assisted descemet membrane endothelial keratoplasty in the DISCOVER study. Am J Ophthalmol. 2015;160(3):430–7.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Saad A, Guilbert E, Grise-Dulac A, Sabatier P, Gatinel D. Intraoperative OCT-assisted DMEK: 14 consecutive cases. Cornea. 2015;34(7):802–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Ide T, Wang J, Tao A, Leng T, Kymionis GD, O’Brien TP, et al. Intraoperative use of three-dimensional spectral-domain optical coherence tomography. Ophthalmic Surg Lasers Imaging Retina. 2010;41(2):250–4.CrossRefGoogle Scholar
  21. 21.
    Juthani VV, Goshe JM, Srivastava SK, Ehlers JP. Association between transient interface fluid on intraoperative OCT and textural interface opacity after DSAEK surgery in the PIONEER study. Cornea. 2014;33(9):887–92.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Knecht PB, Kaufmann C, Menke MN, Watson SL, Bosch MM. Use of intraoperative fourier-domain anterior segment optical coherence tomography during Descemet stripping endothelial keratoplasty. Am J Ophthalmol. 2010;150(3):360–5, e2.Google Scholar
  23. 23.
    Miyakoshi A, Ozaki H, Otsuka M, Hayashi A. Efficacy of intraoperative anterior segment optical coherence tomography during Descemet’s stripping automated endothelial keratoplasty. ISRN Ophthalmol. 2014. doi: 10.1155/2014/562062.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Pasricha ND, Shieh C, Carrasco-Zevallos OM, Keller B, Izatt JA, Toth CA, et al. Real-time microscope-integrated OCT to improve visualization in DSAEK for advanced bullous keratopathy. Cornea. 2015;34(12):1606–10.CrossRefPubMedGoogle Scholar
  25. 25.
    Sng C, Luengo Gimeno F, Mehta JS, Htoon HM, Tan DT. Intraoperative use of spectral-domain optical coherence tomography during Descemet’s stripping automated endothelial keratoplasty. Clin Ophthalmol. 2012;6:479–86.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Xu D, Dupps WJ, Srivastava SK, Ehlers JP. Automated volumetric analysis of interface fluid in Descemet stripping automated endothelial keratoplasty using intraoperative optical coherence tomography volumetric DSAEK interface fluid analysis. Invest Ophthalmol Vis Sci. 2014;55(9):5610–5.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Scorcia V, Busin M, Lucisano A, Beltz J, Carta A, Scorcia G. Anterior segment optical coherence tomography—guided big-bubble technique. Ophthalmology. 2013;120(3):471–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media New York 2016

Authors and Affiliations

  • Sebastian Siebelmann
    • 1
    • 2
    Email author
  • Mario Matthaei
    • 1
  • Philipp Steven
    • 1
    • 2
  • Claus Cursiefen
    • 1
  1. 1.Department of OphthalmologyUniversity of CologneCologneGermany
  2. 2.Cluster of Excellence: Cellular Stress Responses in Aging-associated DiseasesUniversity of CologneCologneGermany

Personalised recommendations