Current Ophthalmology Reports

, Volume 3, Issue 1, pp 40–50 | Cite as

Brachytherapy in Neovascular AMD

Therapies in Age-Related Macular Degeneration (R. Goldhardt, Section Editor)
Part of the following topical collections:
  1. Therapies in Age-Related Macular Degeneration

Abstract

Neovascular age-related macular degeneration (AMD) has a complex pathophysiology, and although anti-VEGF therapy has been one of the most significant and successful advances, it is not effective for all patients with neovascular AMD. The potential role of radiation in the management of neovascular AMD has been suggested for several years. While previous work focused on the role of radiation alone, recent trials have evaluated the role of ionizing radiation as a synergistic treatment with anti-VEGF drugs, with endpoints being to reduce choroidal neovascular lesions faster, preserve visual acuity, and extend the treatment interval between injections. We review the current evidence available for the safety and efficacy of radiation in conjunction with anti-VEGF treatment for neovascular AMD delivered using three approaches—epimacular brachytherapy involving a pars plana vitrectomy (Vidion Neovista, Inc., Newark, CA, USA), episcleral brachytherapy without a pars plana vitrectomy (Salutaris Medical Devices, Tucson, AZ), and low-voltage stereotactic radiotherapy (IRay, Oraya Therapeutics, Inc., Newark, CA, USA).

Keywords

Macular degeneration Radiation Vascular endothelial growth factor Combined therapy Intravitreal therapy Vitrectomy Brachytherapy Epimacular brachytherapy Stereotactic radiotherapy Ionizing radiation Neovascular age-related macular degeneration 

References

  1. 1.
    Kawasaki R, Yasuda M, Song SJ, et al. The prevalence of age-related macular degeneration in Asians: a systematic review and meta-analysis. Ophthalmology. 2010;117(5):921–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Wong TY, Chakravarthy U, Klein R, et al. The natural history and prognosis of neovascular age-related macular degeneration: a systematic review of the literature and meta-analysis. Ophthalmology. 2008;115(1):116–26.CrossRefPubMedGoogle Scholar
  3. 3.
    Congdon N, O’Colmain B, Klaver CC, et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol. 2004;122(4):477–85.CrossRefPubMedGoogle Scholar
  4. 4.
    Singer M. Advances in the management of macular degeneration. F1000 Prime Rep. 2014;6:29.CrossRefGoogle Scholar
  5. 5.
    Friedman DS, O’Colmain BJ, Munoz B, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122(4):564–72.CrossRefPubMedGoogle Scholar
  6. 6.
    Seddon JM, Cote J, Davis N, Rosner B. Progression of age-related macular degeneration: association with body mass index, waist circumference, and waist-hip ratio. Arch Ophthalmol. 2003;121(6):785–92.CrossRefPubMedGoogle Scholar
  7. 7.
    Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–16.CrossRefPubMedGoogle Scholar
  8. 8.
    Bressler NM, Doan QV, Varma R, et al. Estimated cases of legal blindness and visual impairment avoided using ranibizumab for choroidal neovascularization: non-Hispanic white population in the United States with age-related macular degeneration. Arch Ophthalmol. 2011;129(6):709–17.PubMedGoogle Scholar
  9. 9.
    Group VISiONCT, D’Amico DJ, Masonson HN, et al. Pegaptanib sodium for neovascular age-related macular degeneration: two-year safety results of the two prospective, multicenter, controlled clinical trials. Ophthalmology. 2006;113(6):992–1001 e1006.CrossRefGoogle Scholar
  10. 10.
    Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5(2):123–32.CrossRefPubMedGoogle Scholar
  11. 11.
    Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–31.CrossRefPubMedGoogle Scholar
  12. 12.
    Ferrara N, Damico L, Shams N, Lowman H, Kim R. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina. 2006;26(8):859–70.CrossRefPubMedGoogle Scholar
  13. 13.
    Browning DJ, Kaiser PK, Rosenfeld PJ, Stewart MW. Aflibercept for age-related macular degeneration: a game-changer or quiet addition? Am J Ophthalmol. 2012;154(2):222–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Rosenfeld PJ. New treatments for age-related macular degeneration. Lancet. 2007;370(9597):1479 author reply 1480.CrossRefPubMedGoogle Scholar
  15. 15.
    Group CR, Martin DF, Maguire MG, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 2011;364(20):1897–908.CrossRefGoogle Scholar
  16. 16.
    Chakravarthy U, Houston RF, Archer DB. Treatment of age-related subfoveal neovascular membranes by teletherapy: a pilot study. Br J Ophthalmol. 1993;77(5):265–73.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Silva RA, Moshfeghi AA, Kaiser PK, Singh RP, Moshfeghi DM. Radiation treatment for age-related macular degeneration. Semin Ophthalmol. 2011;26(3):121–30.CrossRefPubMedGoogle Scholar
  18. 18.
    Flaxel CJ. Use of radiation in the treatment of age-related macular degeneration. Ophthalmol Clin North Am. 2002;15(4):437–44.CrossRefPubMedGoogle Scholar
  19. 19.
    Haas A, Prettenhofer U, Stur M, et al. Morphologic characteristics of disciform scarring after radiation treatment for age-related macular degeneration. Ophthalmology. 2000;107(7):1358–63.CrossRefPubMedGoogle Scholar
  20. 20.
    Finger PT, Chakravarthy U, Augsburger JJ. Radiotherapy and the treatment of age-related macular degeneration. External beam radiation therapy is effective in the treatment of age-related macular degeneration. Arch Ophthalmol. 1998;116(11):1507–11.CrossRefPubMedGoogle Scholar
  21. 21.
    Kim IK, Gragoudas ES. Radiation therapy for neovascular age-related macular degeneration revisited. Br J Ophthalmol. 2009;93(3):279–80.CrossRefPubMedGoogle Scholar
  22. 22.
    Bellmann C, Unnebrink K, Rubin GS, Miller D, Holz FG. Visual acuity and contrast sensitivity in patients with neovascular age-related macular degeneration. Results from the Radiation Therapy for Age-Related Macular Degeneration (RAD-) Study. Graefe’s Arch Clin Exp Ophthalmol. 2003;241(12):968–74.CrossRefGoogle Scholar
  23. 23.
    Bergink GJ, Deutman AF, van den Broek JF, van Daal WA, van der Maazen RW. Radiation therapy for subfoveal choroidal neovascular membranes in age-related macular degeneration. A pilot study. Graefe’s Arch Clin Exp Ophthalmol. 1994;232(10):591–8.CrossRefGoogle Scholar
  24. 24.
    A prospective, randomized, double-masked trial on radiation therapy for neovascular age-related macular degeneration (RAD Study). Radiation therapy for age-related macular degeneration. Ophthalmology. 1999;106(12):2239–2247.Google Scholar
  25. 25.
    Kirwan JF, Constable PH, Murdoch IE, Khaw PT. Beta irradiation: new uses for an old treatment: a review. Eye. 2003;17(2):207–15.CrossRefPubMedGoogle Scholar
  26. 26.
    Rombouts C, Aerts A, Beck M, et al. Differential response to acute low dose radiation in primary and immortalized endothelial cells. Int J Radiat Biol. 2013;89(10):841–50.CrossRefPubMedGoogle Scholar
  27. 27.
    Grossniklaus HE, Martinez JA, Brown VB, et al. Immunohistochemical and histochemical properties of surgically excised subretinal neovascular membranes in age-related macular degeneration. Am J Ophthalmol. 1992;114(4):464–72.CrossRefPubMedGoogle Scholar
  28. 28.
    Eissner G, Kohlhuber F, Grell M, et al. Critical involvement of transmembrane tumor necrosis factor-alpha in endothelial programmed cell death mediated by ionizing radiation and bacterial endotoxin. Blood. 1995;86(11):4184–93.PubMedGoogle Scholar
  29. 29.
    Archer DB, Amoaku WM, Gardiner TA. Radiation retinopathy: clinical, histopathological, ultrastructural and experimental correlations. Eye. 1991;5(Pt 2):239–51.CrossRefPubMedGoogle Scholar
  30. 30.
    Rubin DB, Drab EA, Kang HJ, Baumann FE, Blazek ER. WR-1065 and radioprotection of vascular endothelial cells. I. Cell proliferation, DNA synthesis and damage. Radiat Res. 1996;145(2):210–6.CrossRefPubMedGoogle Scholar
  31. 31.
    De Gowin RL, Lewis LJ, Hoak JC, Mueller AL, Gibson DP. Radiosensitivity of human endothelial cells in culture. J Lab Clin Med. 1974;84(1):42–8.PubMedGoogle Scholar
  32. 32.
    Krishnan L, Krishnan EC, Jewell WR. Immediate effect of irradiation on microvasculature. Int J Radiat Oncol Biol Phys. 1988;15(1):147–50.CrossRefPubMedGoogle Scholar
  33. 33.
    Mooteri SN, Podolski JL, Drab EA, et al. WR-1065 and radioprotection of vascular endothelial cells. II. Morphology. Radiat Res. 1996;145(2):217–24.CrossRefPubMedGoogle Scholar
  34. 34.
    Rosander K, Zackrisson B. DNA damage in human endothelial cells after irradiation in anoxia. Acta Oncol. 1995;34(1):111–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Verheij M, Koomen GC, van Mourik JA, Dewit L. Radiation reduces cyclooxygenase activity in cultured human endothelial cells at low doses. Prostaglandins. 1994;48(6):351–66.CrossRefPubMedGoogle Scholar
  36. 36.
    Chakravarthy U, Gardiner TA, Archer DB, Maguire CJ. A light microscopic and autoradiographic study of non-irradiated and irradiated ocular wounds. Curr Eye Res. 1989;8(4):337–48.CrossRefPubMedGoogle Scholar
  37. 37.
    Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.CrossRefPubMedGoogle Scholar
  38. 38.
    Gunduz K, Shields CL, Shields JA, Cater J, Freire JE, Brady LW. Radiation retinopathy following plaque radiotherapy for posterior uveal melanoma. Arch Ophthalmol. 1999;117(5):609–14.CrossRefPubMedGoogle Scholar
  39. 39.
    Archambeau JO, Mao XW, Yonemoto LT, et al. What is the role of radiation in the treatment of subfoveal membranes: review of radiobiologic, pathologic, and other considerations to initiate a multimodality discussion. Int J Radiat Oncol Biol Phys. 1998;40(5):1125–36.CrossRefPubMedGoogle Scholar
  40. 40.
    Hart PM, Archer DB, Chakravarthy U. Asymmetry of disciform scarring in bilateral disease when one eye is treated with radiotherapy. Br J Ophthalmol. 1995;79(6):562–8.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Chakravarthy U, MacKenzie G. External beam radiotherapy in exudative age-related macular degeneration: a pooled analysis of phase I data. Br J Radiol. 2000;73(867):305–13.CrossRefPubMedGoogle Scholar
  42. 42.
    Lambooij AC, Kuijpers RW, Mooy CM, Kliffen M. Radiotherapy of exudative age-related macular degeneration; a clinical and pathologic study. Graefe’s Arch Clin Exp Ophthalmol. 2001;239(7):539–43.CrossRefGoogle Scholar
  43. 43.
    Kishan AU, Modjtahedi BS, Morse LS, Lee P. Radiation therapy for neovascular age-related macular degeneration. Int J Radiat Oncol Biol Phys. 2013;85(3):583–97.CrossRefPubMedGoogle Scholar
  44. 44.
    Petrarca R, Jackson TL. Radiation therapy for neovascular age-related macular degeneration. Clin Ophthalmol. 2011;5:57–63.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Finger PT, Berson A, Ng T, Szechter A. Ophthalmic plaque radiotherapy for age-related macular degeneration associated with subretinal neovascularization. Am J Ophthalmol. 1999;127(2):170–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Ivanov VN, Zhou H, Ghandhi SA, et al. Radiation-induced bystander signaling pathways in human fibroblasts: a role for interleukin-33 in the signal transmission. Cell Signal. 2010;22(7):1076–87.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Lommatzsch PK, Werschnik C, Schuster E. Long-term follow-up of Ru-106/Rh-106 brachytherapy for posterior uveal melanoma. Graefe’s Archive Clin Exp Ophthalmol. 2000;238(2):129–37.CrossRefGoogle Scholar
  48. 48.
    Moore RF. Choroidal sarcoma treated by the intraocular insertion of radon seeds. Br J Ophthalmol. 1930;14(4):145–52.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    van Ginderdeuren R, van Limbergen E, Spileers W. 18 years’ experience with high dose rate strontium-90 brachytherapy of small to medium sized posterior uveal melanoma. Br J Ophthalmol. 2005;89(10):1306–10.CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    • Jaakkola A, Heikkonen J, Tommila P, Laatikainen L, Immonen I. Strontium plaque brachytherapy for exudative age-related macular degeneration: three-year results of a randomized study. Ophthalmology. 2005;112(4):567–73. Initial report evaluating the efficacy of episcleral 175 strontium 90 (Sr90) plaque brachytherapy in patients with CNV. Google Scholar
  51. 51.
    Char DH, Irvine AI, Posner MD, Quivey J, Phillips TL, Kroll S. Randomized trial of radiation for age-related macular degeneration. Am J Ophthalmol. 1999;127(5):574–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Bergink GJ, Hoyng CB, van der Maazen RW, Vingerling JR, van Daal WA, Deutman AF. A randomized controlled clinical trial on the efficacy of radiation therapy in the control of subfoveal choroidal neovascularization in age-related macular degeneration: radiation versus observation. Graefe’s Arch Clin Exp Ophthalmol. 1998;236(5):321–5.CrossRefGoogle Scholar
  53. 53.
    Furtado JM, Lansingh VC, Carter MJ, et al. Causes of blindness and visual impairment in Latin America. Surv Ophthalmol. 2012;57(2):149–77.CrossRefPubMedGoogle Scholar
  54. 54.
    Avila MP, Farah ME, Santos A, Duprat JP, Woodward BW, Nau J. Twelve-month short-term safety and visual-acuity results from a multicentre prospective study of epiretinal strontium-90 brachytherapy with bevacizumab for the treatment of subfoveal choroidal neovascularisation secondary to age-related macular degeneration. Br J Ophthalmol. 2009;93(3):305–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Avila MP, Farah ME, Santos A, et al. Three-year safety and visual acuity results of epimacular 90 strontium/90 yttrium brachytherapy with bevacizumab for the treatment of subfoveal choroidal neovascularization secondary to age-related macular degeneration. Retina. 2012;32(1):10–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Hokkanen J, Heikkonen J, Holmberg P. Theoretical calculations of dose distributions for beta-ray eye applicators. Med Phys. 1997;24(2):211–3.CrossRefPubMedGoogle Scholar
  57. 57.
    Robison CD, Krebs I, Binder S, et al. Vitreomacular adhesion in active and end-stage age-related macular degeneration. Am J Ophthalmol. 2009;148(1):79–82.e2.CrossRefPubMedGoogle Scholar
  58. 58.
    Stefansson E, Landers MB 3rd, Wolbarsht ML. Increased retinal oxygen supply following pan-retinal photocoagulation and vitrectomy and lensectomy. Trans Am Ophthalmol Soc. 1981;79:307–34.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Canton VM, Quiroz-Mercado H, Velez-Montoya R, et al. 24-Gy low-voltage X-ray irradiation with ranibizumab therapy for neovascular AMD: 6-month safety and functional outcomes. Ophthalmic Surg Lasers Imaging. 2012;43(1):20–4.CrossRefPubMedGoogle Scholar
  60. 60.
    Jaakkola A, Heikkonen J, Tommila P, Laatikainen L, Immonen I. Strontium plaque irradiation of subfoveal neovascular membranes in age-related macular degeneration. Graefe’s Arch Clin Exp Ophthalmol. 1998;236(1):24–30.CrossRefGoogle Scholar
  61. 61.
    Avila MP, Farah ME, Santos A, et al. Twelve-month safety and visual acuity results from a feasibility study of intraocular, epiretinal radiation therapy for the treatment of subfoveal CNV secondary to AMD. Retina. 2009;29(2):157–69.CrossRefPubMedGoogle Scholar
  62. 62.
    •• Dugel PU, Bebchuk JD, Nau J, et al. Epimacular brachytherapy for neovascular age-related macular degeneration: a randomized, controlled trial (CABERNET). Ophthalmology. 2013;120(2):317–27. Results of the CABERNET trial a randomized, active-controlled, phase III clinical trial demonstrating non inferiority of epimacular brachytherapy compared to ranibizumab monotherapy using a 20 % non-inferiority margin. Google Scholar
  63. 63.
    Petrarca R, Dugel PU, Bennett M, et al. Macular epiretinal brachytherapy in treated age-related macular degeneration (MERITAGE): month 24 safety and efficacy results. Retina. 2014;34(5):874–9.CrossRefPubMedGoogle Scholar
  64. 64.
    Dugel PU, Petrarca R, Bennett M, et al. Macular epiretinal brachytherapy in treated age-related macular degeneration: MERITAGE study: twelve-month safety and efficacy results. Ophthalmology. 2012;119(7):1425–31.CrossRefPubMedGoogle Scholar
  65. 65.
    McGill CS, Schwartz JA, Moore JZ, McLaughlin PW, Shih AJ. Precision grid and hand motion for accurate needle insertion in brachytherapy. Med Phys. 2011;38(8):4749–59.CrossRefPubMedGoogle Scholar
  66. 66.
    Schindler R. Episcleral brachytherapy in the management of age-related choroidal neovascularization. Retina 2012;2012; Hawaii.Google Scholar
  67. 67.
    Rodel F, Keilholz L, Herrmann M, Sauer R, Hildebrandt G. Radiobiological mechanisms in inflammatory diseases of low-dose radiation therapy. Int J Radiat Biol. 2007;83(6):357–66.CrossRefPubMedGoogle Scholar
  68. 68.
    Hadjimichael C, Kardamakis D, Papaioannou S. Irradiation dose-response effects on angiogenesis and involvement of nitric oxide. Anticancer Res. 2005;25(2A):1059–65.PubMedGoogle Scholar
  69. 69.
    • Moshfeghi DM, Kaiser PK, Gertner M. Stereotactic low-voltage X-ray irradiation for age-related macular degeneration. Br J Ophthalmol. 2011;95(2):185–8. Initial description of the Low-Voltage Stereotactic Radiotherapy system. Google Scholar
  70. 70.
    Canton VM, Quiroz-Mercado H, Velez-Montoya R, et al. 16-Gy low-voltage X-ray irradiation with ranibizumab therapy for AMD: 6-month safety and functional outcomes. Ophthalmic Surg Lasers Imaging. 2011;42(6):468–73.CrossRefPubMedGoogle Scholar
  71. 71.
    Moshfeghi AA, Morales-Canton V, Quiroz-Mercado H, et al. 16 Gy low-voltage X-ray irradiation followed by as needed ranibizumab therapy for age-related macular degeneration: 12 month outcomes of a ‘radiation-first’ strategy. Br J Ophthalmol. 2012;96(10):1320–4.CrossRefPubMedGoogle Scholar
  72. 72.
    Hanlon J, Firpo M, Chell E, Moshfeghi DM, Bolch WE. Stereotactic radiosurgery for AMD: a Monte Carlo-based assessment of patient-specific tissue doses. Invest Ophthalmol Vis Sci. 2011;52(5):2334–42.CrossRefPubMedGoogle Scholar
  73. 73.
    Taddei PJ, Chell E, Hansen S, Gertner M, Newhauser WD. Assessment of targeting accuracy of a low-energy stereotactic radiosurgery treatment for age-related macular degeneration. Phys Med Biol. 2010;55(23):7037–54.CrossRefPubMedCentralPubMedGoogle Scholar
  74. 74.
    Lee C, Chell E, Gertner M, et al. Dosimetry characterization of a multibeam radiotherapy treatment for age-related macular degeneration. Med Phys. 2008;35(11):5151–60.CrossRefPubMedGoogle Scholar
  75. 75.
    Hanlon J, Lee C, Chell E, et al. Kilovoltage stereotactic radiosurgery for age-related macular degeneration: assessment of optic nerve dose and patient effective dose. Med Phys. 2009;36(8):3671–81.CrossRefPubMedGoogle Scholar
  76. 76.
    Gertner M, Chell E, Pan KH, Hansen S, Kaiser PK, Moshfeghi DM. Stereotactic targeting and dose verification for age-related macular degeneration. Med Phys. 2010;37(2):600–6.CrossRefPubMedGoogle Scholar
  77. 77.
    Singh RP, Shusterman EM, Moshfeghi D, Danis R, Gertner M. Pilot study of the delivery of microcollimated pars plana external beam radiation in porcine eyes: 270-day analysis. J Ophthalmol. 2012;2012:615214.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Barakat MR, Shusterman M, Moshfeghi D, Danis R, Gertner M, Singh RP. Pilot study of the delivery of microcollimated pars plana external beam radiation in porcine eyes. Arch Ophthalmol. 2011;129(5):628–32.CrossRefPubMedGoogle Scholar
  79. 79.
    Moshfeghi AA, Canton VM, Quiroz-Mercado H, et al. 16-Gy low-voltage X-ray irradiation followed by as-needed ranibizumab therapy for AMD: 6-month outcomes of a “radiation-first” strategy. Ophthalmic Surg Lasers Imaging. 2011;42(6):460–7.CrossRefPubMedGoogle Scholar
  80. 80.
    • Jackson TL, Chakravarthy U, Kaiser PK, et al. Stereotactic radiotherapy for neovascular age-related macular degeneration: 52-week safety and efficacy results of the INTREPID study. Ophthalmology. 2013;120(9):1893–900. INTREPID Trial: At 1 year, the study met primary and secondary end points and showed that Stereotactic Radiotherapy significantly reduced the need for anti-VEGF injections while maintaining vision, with a favorable safety profile. Google Scholar
  81. 81.
    •• Jackson T. INTREPID data and its significance. London: EURETINA; 2014. Two-year results of INTREPID trial showed that the previously treated wet AMD patients continued to receive the benefits of a 25 % mean reduction in anti-VEGF injections over 2 years. Additionally, the targeted patient population maintained a 45 % mean reduction in injections through 2-years, with stable vision. Google Scholar
  82. 82.
    Brown DM, Regillo CD. Anti-VEGF agents in the treatment of neovascular age-related macular degeneration: applying clinical trial results to the treatment of everyday patients. Am J Ophthalmol. 2007;144(4):627–37.CrossRefPubMedGoogle Scholar
  83. 83.
    Kakinoki M, Sawada O, Sawada T, Saishin Y, Kawamura H, Ohji M. Effect of vitrectomy on aqueous VEGF concentration and pharmacokinetics of bevacizumab in macaque monkeys. Invest Ophthalmol Vis Sci. 2012;53(9):5877–80.CrossRefPubMedGoogle Scholar
  84. 84.
    •• Petrarca R, Richardson M, Douiri A, et al. Safety testing of epimacular brachytherapy with microperimetry and indocyanine green angiography: 12-month results. Retina. 2013;33(6):1232–40. Study demonstrating the safety results of epimacular brachytherapy with microperimetry and ICG. Google Scholar
  85. 85.
    •• Excellence NIfHaC. Treating wet age-related macular degeneration (AMD) using localised radiotherapy. Manchester: Excellence NIfHaC; 2011. 2011 Practice Guidelines and Position Statements from the United Kingdom’s National Institute for Health and Clinical Excellence stating that current evidence on the efficacy of epiretinal brachytherapy for neovascular AMD is inadequate and limited to small numbers of patients. Google Scholar

Copyright information

© Springer Science + Business Media New York 2015

Authors and Affiliations

  1. 1.Duke Eye CenterDuke University Medical CenterDurhamUSA

Personalised recommendations