Advertisement

Dual-Energy CT Pulmonary Angiography: Quantification of Disease Burden and Impact on Management

  • Simon S. Martin
  • Marly van Assen
  • L. Parkwood Griffith
  • Carlo N. De Cecco
  • Akos Varga-Szemes
  • Maximilian J. Bauer
  • Julian L. Wichmann
  • Thomas J. Vogl
  • U. Joseph Schoepf
Computed Tomography (S Nicolaou and M Mohammed, Section Editors)
  • 32 Downloads
Part of the following topical collections:
  1. Computed Tomography

Abstract

Purpose of Review

Computed tomography pulmonary angiography (CTPA) has become the imaging modality of choice for patients with suspected pulmonary embolism (PE). Post-processing techniques currently available for dual-energy CT pulmonary angiography (DE-CTPA) enhance image quality and provide additional value in the diagnosis of PE. The objective of this article is to summarize these recent developments and discuss the appropriate use of DE-CTPA post-processing applications.

Recent Findings

DE-CTPA post-processing applications enable reconstruction of virtual monoenergetic images (VMI) and color-coded iodine-perfusion maps to increase contrast conditions and visualize lung perfusion defects in case of embolic occlusion of pulmonary arteries. Both techniques revealed a superior diagnostic performance for the detection of pulmonary emboli and assessment of the pulmonary perfusion compared to the standard image reconstructions.

Summary

DE-CTPA is a well-established method for excluding or diagnosing PE. Continued developments in DE-CTPA post-processing techniques improve patient management and allow for a quantification of disease burden.

Keywords

Dual-energy computed tomography Computed tomography pulmonary angiography Pulmonary embolism Pulmonary perfusion Diagnostic accuracy 

Notes

Compliance with Ethical Guidelines

Conflict of interest

Simon S. Martin, Marly van Assen, L. Parkwood Griffith, Maximilian J. Bauer, and Thomas J. Vogl each declare no potential conflicts of interest. Carlo N. De Cecco reports a grant from Siemens. Akos Varga-Szemes reports a grant from Siemens and is a consultant for Guerbet. Julian L. Wichmann reports personal fees from Siemens and GE Healthcare. U. Joseph Schoepf reports receives institutional research support from Astellas, Bayer, General Electric, and Siemens Healthineers. Dr. Schoepf has received honoraria for speaking and consulting from Bayer, Guerbet, HeartFlow Inc., and Siemens Healthineers.

Human and Animal Rights Statement

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

References

Recently published papers of particular interest have been highlighted as: ∙ Of importance

  1. 1.
    Members ATF, Konstantinides SV, Torbicki A, Agnelli G, Danchin N, Fitzmaurice D, et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism: The Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC) Endorsed by the European Respiratory Society (ERS). Eur Heart J. 2014;35(43):3033–73.CrossRefGoogle Scholar
  2. 2.
    Schoepf UJ, Costello P. CT angiography for diagnosis of pulmonary embolism: state of the art. Radiology. 2004;230(2):329–37.CrossRefPubMedGoogle Scholar
  3. 3.
    Hartmann IJ, Wittenberg R, Schaefer-Prokop C. Imaging of acute pulmonary embolism using multi-detector CT angiography: an update on imaging technique and interpretation. Eur J Radiol. 2010;74(1):40–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Jones SE, Wittram C. The indeterminate CT pulmonary angiogram: imaging characteristics and patient clinical outcome. Radiology. 2005;237(1):329–37.CrossRefPubMedGoogle Scholar
  5. 5.
    Wittram C, Maher MM, Yoo AJ, Kalra MK, Shepard JA, McLoud TC. CT angiography of pulmonary embolism: diagnostic criteria and causes of misdiagnosis. Radiographics: a review publication of the Radiological Society of North America, Inc. 2004;24(5):1219–38.Google Scholar
  6. 6.
    Renapurkar RD, Shrikanthan S, Heresi GA, Lau CT, Gopalan D. Imaging in chronic thromboembolic pulmonary hypertension. J Thorac Imaging. 2017;32(2):71–88.CrossRefPubMedGoogle Scholar
  7. 7.
    Nayak GK, Yu S, Levsky JM, Haramati LB. Illness Severity and Comorbidities Are Associated With Limitations in Computed Tomography Pulmonary Angiography. J Thorac Imaging. 2016;31(5):W60–1.CrossRefPubMedGoogle Scholar
  8. 8.
    Gosselin MV, Rassner UA, Thieszen SL, Phillips J, Oki A. Contrast dynamics during CT pulmonary angiogram: analysis of an inspiration associated artifact. J Thorac Imaging. 2004;19(1):1–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Mortimer A, Singh R, Hughes J, Greenwood R, Hamilton M. Use of expiratory CT pulmonary angiography to reduce inspiration and breath-hold associated artefact: contrast dynamics and implications for scan protocol. Clin Radiol. 2011;66(12):1159–66.CrossRefPubMedGoogle Scholar
  10. 10.
    Wittram C, Yoo AJ. Transient interruption of contrast on CT pulmonary angiography: proof of mechanism. J Thorac Imaging. 2007;22(2):125–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Koike H, Sueyoshi E, Sakamoto I, Uetani M. Clinical significance of late phase of lung perfusion blood volume (lung perfusion blood volume) quantified by dual-energy computed tomography in patients with pulmonary thromboembolism. J Thorac Imaging. 2017;32(1):43–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Tabari A, Lo Gullo R, Murugan V, Otrakji A, Digumarthy S, Kalra M. Recent advances in computed tomographic technology: cardiopulmonary imaging applications. J Thorac Imaging. 2017;32(2):89–100.CrossRefPubMedGoogle Scholar
  13. 13.
    Raczeck P, Minko P, Graeber S, Fries P, Seidel R, Buecker A, et al. Influence of respiratory position on contrast attenuation in pulmonary CT angiography: a prospective randomized clinical trial. AJR Am J Roentgenol. 2016;206(3):481–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Hughes JM, Glazier JB, Maloney JE, West JB. Effect of lung volume on the distribution of pulmonary blood flow in man. Respir Physiol. 1968;4(1):58–72.CrossRefPubMedGoogle Scholar
  15. 15.
    Green J. Pressure-flow relationships of the pulmonary circulation. Mechanical concepts in cardiovascular and pulmonary physiology. Philadelphia: Lea and Febiger; 1977. p. 55–65.Google Scholar
  16. 16.
    Halpern EJ. Triple-rule-out CT angiography for evaluation of acute chest pain and possible acute coronary syndrome. Radiology. 2009;252(2):332–45.CrossRefPubMedGoogle Scholar
  17. 17.
    Halpern EJ, Levin DC, Zhang S, Takakuwa KM. Comparison of image quality and arterial enhancement with a dedicated coronary CTA protocol versus a triple rule-out coronary CTA protocol. Acad Radiol. 2009;16(9):1039–48.CrossRefPubMedGoogle Scholar
  18. 18.
    Takakuwa KM, Halpern EJ. Evaluation of a “triple rule-out” coronary CT angiography protocol: use of 64-section CT in low-to-moderate risk emergency department patients suspected of having acute coronary syndrome. Radiology. 2008;248(2):438–46.CrossRefPubMedGoogle Scholar
  19. 19.
    Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M, Herold CJ, Prokop M. CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology. 2006;241(3):899–907.CrossRefPubMedGoogle Scholar
  20. 20.
    Szucs-Farkas Z, Schibler F, Cullmann J, Torrente JC, Patak MA, Raible S, et al. Diagnostic accuracy of pulmonary CT angiography at low tube voltage: intraindividual comparison of a normal-dose protocol at 120 kVp and a low-dose protocol at 80 kVp using reduced amount of contrast medium in a simulation study. Am J Roentgenol. 2011;197(5):W852–9.CrossRefGoogle Scholar
  21. 21.
    Fanous R, Kashani H, Jimenez L, Murphy G, Paul NS. Image quality and radiation dose of pulmonary CT angiography performed using 100 and 120 kVp. Am J Roentgenol. 2012;199(5):990–6.CrossRefGoogle Scholar
  22. 22.
    Hou DJ, Tso DK, Davison C, Inacio J, Louis LJ, Nicolaou S, et al. Clinical utility of ultra high pitch dual source thoracic CT imaging of acute pulmonary embolism in the emergency department: are we one step closer towards a non-gated triple rule out? Eur J Radiol. 2013;82(10):1793–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Mourits MM, Nijhof WH, van Leuken MH, Jager GJ, Rutten MJ. Reducing contrast medium volume and tube voltage in CT angiography of the pulmonary artery. Clin Radiol. 2016;71(6):615e7–e13.Google Scholar
  24. 24.
    Faggioni L, Neri E, Sbragia P, Pascale R, D’Errico L, Caramella D, et al. 80-kV pulmonary CT angiography with 40 mL of iodinated contrast material in lean patients: comparison of vascular enhancement with iodixanol (320 mg I/mL) and iomeprol (400 mg I/mL). Am J Roentgenol. 2012;199(6):1220–5.CrossRefGoogle Scholar
  25. 25.
    Kaul D, Grupp U, Kahn J, Ghadjar P, Wiener E, Hamm B, et al. Reducing radiation dose in the diagnosis of pulmonary embolism using adaptive statistical iterative reconstruction and lower tube potential in computed tomography. Eur Radiol. 2014;24(11):2685–91.CrossRefPubMedGoogle Scholar
  26. 26.
    Bodelle B, Fischbach C, Booz C, Yel I, Frellesen C, Beeres M, et al. Free-breathing high-pitch 80kVp dual-source computed tomography of the pediatric chest: Image quality, presence of motion artifacts and radiation dose. Eur J Radiol. 2017;89:208–14.CrossRefPubMedGoogle Scholar
  27. 27.
    Li X, Ni QQ, Schoepf UJ, Wichmann JL, Felmly LM, Qi L, et al. 70-kVp high-pitch computed tomography pulmonary angiography with 40 ml contrast agent: initial experience. Acad Radiol. 2015;22(12):1562–70.CrossRefPubMedGoogle Scholar
  28. 28.
    Lu GM, Luo S, Meinel FG, McQuiston AD, Zhou CS, Kong X, et al. High-pitch computed tomography pulmonary angiography with iterative reconstruction at 80 kVp and 20 mL contrast agent volume. Eur Radiol. 2014;24(12):3260–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Schuhbaeck A, Achenbach S, Layritz C, Eisentopf J, Hecker F, Pflederer T, et al. Image quality of ultra-low radiation exposure coronary CT angiography with an effective dose < 0.1 mSv using high-pitch spiral acquisition and raw data-based iterative reconstruction. Eur Radiol. 2013;23(3):597–606.CrossRefPubMedGoogle Scholar
  30. 30.
    Ajlan AM, Binzaqr S, Jadkarim DA, Jamjoom LG, Leipsic J. High-pitch helical dual-source computed tomographic pulmonary angiography: comparing image quality in inspiratory breath-hold and during free breathing. J Thorac Imaging. 2016;31(1):56–62.CrossRefPubMedGoogle Scholar
  31. 31.
    Lenga L, Albrecht MH, Othman AE, Martin SS, Leithner D, D’Angelo T, et al. Monoenergetic dual-energy computed tomographic imaging: cardiothoracic applications. J Thorac Imaging. 2017;32(3):151–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Wichmann JL, Hardie AD, Schoepf UJ, Felmly LM, Perry JD, Varga-Szemes A, et al. Single- and dual-energy CT of the abdomen: comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT. Eur Radiol. 2017;27(2):642–50.CrossRefPubMedGoogle Scholar
  33. 33.
    Schenzle JC, Sommer WH, Neumaier K, Michalski G, Lechel U, Nikolaou K, et al. Dual energy CT of the chest: how about the dose? Invest Radiol. 2010;45(6):347–53.PubMedGoogle Scholar
  34. 34.
    Scholtz JE, Husers K, Kaup M, Albrecht M, Schulz B, Frellesen C, et al. Non-linear image blending improves visualization of head and neck primary squamous cell carcinoma compared to linear blending in dual-energy CT. Clin Radiol. 2015;70(2):168–75.CrossRefPubMedGoogle Scholar
  35. 35.
    Holmes DR 3rd, Fletcher JG, Apel A, Huprich JE, Siddiki H, Hough DM, et al. Evaluation of non-linear blending in dual-energy computed tomography. Eur J Radiol. 2008;68(3):409–13.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Eusemann C, Holmes DR, Schmidt B, Flohr TG, Robb R, McCollough C, et al., editors. Dual energy CT: How to best blend both energies in one fused image? Medical Imaging 2008: Visualization, Image-guided Procedures, and Modeling; 2008: International Society for Optics and Photonics.Google Scholar
  37. 37.
    Martin SS, Weidinger S, Czwikla R, Kaltenbach B, Albrecht MH, Lenga L, et al. Iodine and fat quantification for differentiation of adrenal gland adenomas from metastases using third-generation dual-source dual-energy computed tomography. Invest Radiol. 2018;53(3):173–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Baxa J, Matouskova T, Krakorova G, Schmidt B, Flohr T, Sedlmair M, et al. Dual-phase dual-energy ct in patients treated with erlotinib for advanced non-small cell lung cancer: possible benefits of iodine quantification in response assessment. Eur Radiol. 2016;26(8):2828–36.CrossRefPubMedGoogle Scholar
  39. 39.
    Borhani AA, Kulzer M, Iranpour N, Ghodadra A, Sparrow M, Furlan A, et al. Comparison of true unenhanced and virtual unenhanced (VUE) attenuation values in abdominopelvic single-source rapid kilovoltage-switching spectral CT. Abdom Radiol (NY). 2017;42(3):710–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Mileto A, Mazziotti S, Gaeta M, Bottari A, Zimbaro F, Giardina C, et al. Pancreatic dual-source dual-energy CT: is it time to discard unenhanced imaging? Clin Radiol. 2012;67(4):334–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21(7):1424–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Albrecht MH, Scholtz JE, Husers K, Beeres M, Bucher AM, Kaup M, et al. Advanced image-based virtual monoenergetic dual-energy CT angiography of the abdomen: optimization of kiloelectron volt settings to improve image contrast. Eur Radiol. 2016;26(6):1863–70.CrossRefPubMedGoogle Scholar
  43. 43.
    Mayer TE, Hamann GF, Baranczyk J, Rosengarten B, Klotz E, Wiesmann M, et al. Dynamic CT perfusion imaging of acute stroke. AJNR Am J Neuroradiol. 2000;21(8):1441–9.PubMedGoogle Scholar
  44. 44.
    Wildberger JE, Schoepf UJ, Mahnken AH, Herzog P, Ditt H, Niethammer MU, et al., editors. Approaches to CT perfusion imaging in pulmonary embolism. Seminars in roentgenology; 2005: Elsevier.Google Scholar
  45. 45.
    Herzog P, Wildberger JE, Niethammer M, Schaller S, Schoepf UJ. CT perfusion imaging of the lung in pulmonary embolism. Acad Radiol. 2003;10(10):1132–46.CrossRefPubMedGoogle Scholar
  46. 46.
    Thieme SF, Johnson TR, Lee C, McWilliams J, Becker CR, Reiser MF, et al. Dual-energy CT for the assessment of contrast material distribution in the pulmonary parenchyma. AJR Am J Roentgenol. 2009;193(1):144–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Henzler T, Barraza JM Jr, Nance JW Jr, Costello P, Krissak R, Fink C, et al. CT imaging of acute pulmonary embolism. J Cardiovasc Comput Tomogr. 2011;5(1):3–11.CrossRefPubMedGoogle Scholar
  48. 48.
    Okada M, Kunihiro Y, Nakashima Y, Nomura T, Kudomi S, Yonezawa T, et al. Added value of lung perfused blood volume images using dual-energy CT for assessment of acute pulmonary embolism. Eur J Radiol. 2015;84(1):172–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Kang M-J, Park CM, Lee C-H, Goo JM, Lee HJ. Dual-energy CT: clinical applications in various pulmonary diseases. Radiographics: a review publication of the Radiological Society of North America, Inc. 2010;30(3):685–98.Google Scholar
  50. 50.
    Kong X, Sheng HX, Lu GM, Meinel FG, Dyer KT, Schoepf UJ, et al. Xenon-enhanced dual-energy CT lung ventilation imaging: techniques and clinical applications. AJR Am J Roentgenol. 2014;202(2):309–17.CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang LJ, Zhou CS, Schoepf UJ, Sheng HX, Wu SY, Krazinski AW, et al. Dual-energy CT lung ventilation/perfusion imaging for diagnosing pulmonary embolism. Eur Radiol. 2013;23(10):2666–75.CrossRefPubMedGoogle Scholar
  52. 52.
    Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol. 2012;199(5 Suppl):S9–15.CrossRefPubMedGoogle Scholar
  53. 53.
    Yu L, Christner JA, Leng S, Wang J, Fletcher JG, McCollough CH. Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys. 2011;38(12):6371–9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Meinel FG, Bischoff B, Zhang Q, Bamberg F, Reiser MF, Johnson TR. Metal artifact reduction by dual-energy computed tomography using energetic extrapolation: a systematically optimized protocol. Invest Radiol. 2012;47(7):406–14.CrossRefPubMedGoogle Scholar
  55. 55.
    Grant KL, Flohr TG, Krauss B, Sedlmair M, Thomas C, Schmidt B. Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Invest Radiol. 2014;49(9):586–92.CrossRefPubMedGoogle Scholar
  56. 56.
    Beeres M, Trommer J, Frellesen C, Nour-Eldin NE, Scholtz JE, Herrmann E, et al. Evaluation of different keV-settings in dual-energy CT angiography of the aorta using advanced image-based virtual monoenergetic imaging. Int J Cardiovasc Imaging. 2016;32(1):137–44.CrossRefPubMedGoogle Scholar
  57. 57.
    Wichmann JL, Gillott MR, De Cecco CN, Mangold S, Varga-Szemes A, Yamada R, et al. Dual-energy computed tomography angiography of the lower extremity runoff: impact of noise-optimized virtual monochromatic imaging on image quality and diagnostic accuracy. Invest Radiol. 2016;51(2):139–46.CrossRefPubMedGoogle Scholar
  58. 58.
    Martin SS, Wichmann JL, Scholtz JE, Leithner D, D’Angelo T, Weyer H, et al. Noise-optimized virtual monoenergetic dual-energy CT improves diagnostic accuracy for the detection of active arterial bleeding of the abdomen. J Vasc Interv Radiol. 2017;28(9):1257–66.CrossRefPubMedGoogle Scholar
  59. 59.
    Martin SS, Wichmann JL, Weyer H, Scholtz JE, Leithner D, Spandorfer A, et al. Endoleaks after endovascular aortic aneurysm repair: improved detection with noise-optimized virtual monoenergetic dual-energy CT. Eur J Radiol. 2017;94:125–32.CrossRefPubMedGoogle Scholar
  60. 60.
    ∙ Weiss J, Notohamiprodjo M, Bongers M, Schabel C, Mangold S, Nikolaou K, et al. Effect of noise-optimized monoenergetic postprocessing on diagnostic accuracy for detecting incidental pulmonary embolism in portal-venous phase dual-energy computed tomography. Investig Radiol. 2017;52(3):142–7. This study evaluated diagnostic accuracy of virtual monoenergetic images at low keV levels for the detection of incidental PE in oncological follow-up DECT staging examinations. The authors revealed that these reconstructions improved diagnostic accuracy with the highest subjective diagnostic confidence at 55 keV. Google Scholar
  61. 61.
    ∙ Leithner D, Wichmann JL, Vogl TJ, Trommer J, Martin SS, Scholtz JE, et al. Virtual monoenergetic imaging and iodine perfusion maps improve diagnostic accuracy of dual-energy computed tomography pulmonary angiography with suboptimal contrast attenuation. Investig Radiol. 2017;52(11):659–65. This study showed that DECT noise-optimized virtual monoenergetic image reconstructions and iodine perfusion maps improve reader confidence and diagnostic accuracy for segmental PE detection. Google Scholar
  62. 62.
    Schoepf UJ, Kucher N, Kipfmueller F, Quiroz R, Costello P, Goldhaber SZ. Right ventricular enlargement on chest computed tomography: a predictor of early death in acute pulmonary embolism. Circulation. 2004;110(20):3276–80.CrossRefPubMedGoogle Scholar
  63. 63.
    Reid JH, Murchison JT. Acute right ventricular dilatation: a new helical CT sign of massive pulmonary embolism. Clin Radiol. 1998;53(9):694–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Lim KE, Chan CY, Chu PH, Hsu YY, Hsu WC. Right ventricular dysfunction secondary to acute massive pulmonary embolism detected by helical computed tomography pulmonary angiography. Clin Imaging. 2005;29(1):16–21.CrossRefPubMedGoogle Scholar
  65. 65.
    Meinel FG, Nance JW, Jr., Schoepf UJ, Hoffmann VS, Thierfelder KM, Costello P, et al. Predictive value of computed tomography in acute pulmonary embolism: systematic review and meta-analysis. Am J Med. 2015;128(7):747–59e2.Google Scholar
  66. 66.
    Meyer M, Haubenreisser H, Sudarski S, Doesch C, Ong MM, Borggrefe M, et al. Where do we stand? Functional imaging in acute and chronic pulmonary embolism with state-of-the-art CT. Eur J Radiol. 2015;84(12):2432–7.CrossRefPubMedGoogle Scholar
  67. 67.
    Collomb D, Paramelle P, Calaque O, Bosson J, Vanzetto G, Barnoud D, et al. Severity assessment of acute pulmonary embolism: evaluation using helical CT. Eur Radiol. 2003;13(7):1508–14.CrossRefPubMedGoogle Scholar
  68. 68.
    Wu AS, Pezzullo JA, Cronan JJ, Hou DD, Mayo-Smith WW. CT pulmonary angiography: quantification of pulmonary embolus as a predictor of patient outcome—initial experience. Radiology. 2004;230(3):831–5.CrossRefPubMedGoogle Scholar
  69. 69.
    van der Meer RW, Pattynama PM, van Strijen MJ, van den Berg-Huijsmans AA, Hartmann IJ, Putter H, et al. Right ventricular dysfunction and pulmonary obstruction index at helical CT: prediction of clinical outcome during 3-month follow-up in patients with acute pulmonary embolism. Radiology. 2005;235(3):798–803.CrossRefPubMedGoogle Scholar
  70. 70.
    Chae EJ, Seo JB, Jang YM, Krauss B, Lee CW, Lee HJ, et al. Dual-energy CT for assessment of the severity of acute pulmonary embolism: pulmonary perfusion defect score compared with CT angiographic obstruction score and right ventricular/left ventricular diameter ratio. AJR Am J Roentgenol. 2010;194(3):604–10.CrossRefPubMedGoogle Scholar
  71. 71.
    Bauer RW, Frellesen C, Renker M, Schell B, Lehnert T, Ackermann H, et al. Dual energy CT pulmonary blood volume assessment in acute pulmonary embolism–correlation with D-dimer level, right heart strain and clinical outcome. Eur Radiol. 2011;21(9):1914.CrossRefPubMedGoogle Scholar
  72. 72.
    Apfaltrer P, Bachmann V, Meyer M, Henzler T, Barraza JM, Gruettner J, et al. Prognostic value of perfusion defect volume at dual energy CTA in patients with pulmonary embolism: correlation with CTA obstruction scores, CT parameters of right ventricular dysfunction and adverse clinical outcome. Eur J Radiol. 2012;81(11):3592–7.CrossRefPubMedGoogle Scholar
  73. 73.
    ∙ Im DJ, Hur J, Han KH, Lee HJ, Kim YJ, Kwon W, et al. Acute pulmonary embolism: retrospective cohort study of the predictive value of perfusion defect volume measured with dual-energy CT. AJR Am J Roentgenol. 2017;209(5):1015–22. The authors of this study investigated the incremental risk stratification benefit of DECT findings compared with the RV/LV ventricular diameter ratio in patients with acute PE. However, lung perfusion defect volumes had no statistically significant added benefit for prediction of death among patients with acute PE. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Simon S. Martin
    • 1
    • 2
  • Marly van Assen
    • 1
  • L. Parkwood Griffith
    • 1
  • Carlo N. De Cecco
    • 1
  • Akos Varga-Szemes
    • 1
  • Maximilian J. Bauer
    • 1
  • Julian L. Wichmann
    • 2
  • Thomas J. Vogl
    • 2
  • U. Joseph Schoepf
    • 1
  1. 1.Division of Cardiovascular Imaging, Department of Radiology and Radiological ScienceMedical University of South CarolinaCharlestonUSA
  2. 2.Department of Diagnostic and Interventional RadiologyUniversity Hospital FrankfurtFrankfurtGermany

Personalised recommendations