Advertisement

The Emerging Role of 7 Tesla MRI in Musculoskeletal Imaging

  • Rajiv G. Menon
  • Gregory Chang
  • Ravinder R. Regatte
Musculoskeletal Imaging (J Fritz, Section Editor)
Part of the following topical collections:
  1. Musculoskeletal Imaging

Abstract

Purpose of Review

To describe the emergent role of ultra-high field (UHF) MR with respect to musculoskeletal MRI applications.

Recent Findings

With the recent US Federal Drug Administration (FDA) and European Union (EU) approval of ultra-high field (UHF) MRI below 8T for clinical use, and the availability of clinical 7T MRI systems, there is a rising interest in the potential clinical and research applications in musculoskeletal MRI.

Summary

With increases in field strength and SNR gains resulting in sharper and higher spatial resolution MRI images, there is increasing interest in UHF MRI. Although there are challenges and limitations in UHF, there are many new and unique musculoskeletal MR applications that UHF excels at such as morphological imaging, bone micro-architecture evaluation, biochemical imaging techniques such gagCEST, UTE/ZTE, T2 mapping, T2* mapping, T1ρ mapping, and multi-nuclear imaging and spectroscopy/imaging techniques with 23Na and 31P. The goal of this review is to highlight some of these recent findings in musculoskeletal MRI applications at UHF.

Keywords

Ultra-high field (UHF) MRI Bone microstructure Biochemical imaging of cartilage Sodium imaging Phosphorus imaging and spectroscopy 7 Tesla 

Notes

Compliance with Ethical Guidelines

Conflict of interest

Rajiv G. Menon and Ravinder R. Regatte each declare no potential conflicts of interest. Gregory Chang has a patent pending for non-invasively predicting patient-specific bone resilience or toughness.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Recently published papers of particular interest have been highlighted as: • Of importance

  1. 1.
    Alizai H, Chang G, Regatte RR. MRI of the Musculoskeletal System: advanced Applications using High and Ultrahigh Field MRI. Semin Musculoskelet Radiol. 2015;19(4):363–74.  https://doi.org/10.1055/s-0035-1563735.CrossRefPubMedGoogle Scholar
  2. 2.
    Bangerter NK, Taylor MD, Tarbox GJ, Palmer AJ, Park DJ. Quantitative techniques for musculoskeletal MRI at 7 Tesla. Quant Imaging Med Surg. 2016;6(6):715–30.  https://doi.org/10.21037/qims.2016.12.12.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dula AN, Virostko J, Shellock FG. Assessment of MRI issues at 7 T for 28 implants and other objects. AJR Am J Roentgenol. 2014;202(2):401–5.  https://doi.org/10.2214/AJR.13.10777.CrossRefPubMedGoogle Scholar
  4. 4.
    Karamat MI, Darvish-Molla S, Santos-Diaz A. Opportunities and challenges of 7 tesla magnetic resonance imaging: a review. Crit Rev Biomed Eng. 2016;44(1–2):73–89.  https://doi.org/10.1615/CritRevBiomedEng.2016016365.CrossRefPubMedGoogle Scholar
  5. 5.
    Kraff O, Quick HH. 7T: physics, safety, and potential clinical applications. J Magn Reson Imaging. 2017;46(6):1573–89.  https://doi.org/10.1002/jmri.25723.CrossRefPubMedGoogle Scholar
  6. 6.
    Moser E, Stahlberg F, Ladd ME, Trattnig S. 7-T MR–from research to clinical applications? NMR Biomed. 2012;25(5):695–716.  https://doi.org/10.1002/nbm.1794.CrossRefPubMedGoogle Scholar
  7. 7.
    Regatte RR, Schweitzer ME. Ultra-high-field MRI of the musculoskeletal system at 7.0T. J Magn Reson Imaging. 2007;25(2):262–9.  https://doi.org/10.1002/jmri.20814.CrossRefPubMedGoogle Scholar
  8. 8.
    Press Release: FDA clears first 7T magnetic resonance imaging device. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm580154.htm. Accessed 1 Feb 2018.
  9. 9.
    Press release: with 7 tesla scanner magnetom terra, siemens healthineers introduces new clinical field strength in MR IMAGING. https://www.siemens.com/press/PR2017080391HCEN. Accessed 1 Feb 2018.
  10. 10.
    Stahl R, Krug R, Kelley DA, Zuo J, Ma CB, Majumdar S, et al. Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint. Skelet Radiol. 2009;38(8):771–83.  https://doi.org/10.1007/s00256-009-0676-z.CrossRefGoogle Scholar
  11. 11.
    Wang L, Wu Y, Chang G, Oesingmann N, Schweitzer ME, Jerschow A, et al. Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7T. J Magn Reson Imaging. 2009;30(3):606–14.  https://doi.org/10.1002/jmri.21881.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    • Chang G, Deniz CM, Honig S, Egol K, Regatte RR, Zhu Y et al. MRI of the hip at 7T: feasibility of bone micro-architecture, high-resolution cartilage, and clinical imaging. J Magn Reson Imaging. 2014;39(6):1384-93.  https://doi.org/10.1002/jmri.24305.this. Paper demonstrates the feasibility of imaging cartilage and bone micro-architecture in the hip and a develops a clinical protocol.
  13. 13.
    Brinkhof S, Nizak R, Khlebnikov V, Prompers JJ, Klomp DWJ, Saris DBF. Detection of early cartilage damage: feasibility and potential of gagCEST imaging at 7T. Eur Radiol. 2018.  https://doi.org/10.1007/s00330-017-5277-y.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Krug R, Stehling C, Kelley DA, Majumdar S, Link TM. Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T. Invest Radiol. 2009;44(9):613–8.  https://doi.org/10.1097/RLI.0b013e3181b4c055.CrossRefPubMedGoogle Scholar
  15. 15.
    Scheenen TW, Heerschap A, Klomp DW. Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses. MAGMA. 2008;21(1–2):95–101.  https://doi.org/10.1007/s10334-007-0094-y.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Staroswiecki E, Bangerter NK, Gurney PT, Grafendorfer T, Gold GE, Hargreaves BA. In vivo sodium imaging of human patellar cartilage with a 3D cones sequence at 3 T and 7 T. J Magn Reson Imaging. 2010;32(2):446–51.  https://doi.org/10.1002/jmri.22191.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Meyerspeer M, Robinson S, Nabuurs CI, Scheenen T, Schoisengeier A, Unger E, et al. Comparing localized and nonlocalized dynamic 31P magnetic resonance spectroscopy in exercising muscle at 7 T. Magn Reson Med. 2012;68(6):1713–23.  https://doi.org/10.1002/mrm.24205.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Collins CM, Wang Z. Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects. Magn Reson Med. 2011;65(5):1470–82.  https://doi.org/10.1002/mrm.22845.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jordan CD, Saranathan M, Bangerter NK, Hargreaves BA, Gold GE. Musculoskeletal MRI at 3.0 T and 7.0 T: a comparison of relaxation times and image contrast. Eur J Radiol. 2013;82(5):734–9.  https://doi.org/10.1016/j.ejrad.2011.09.021.CrossRefPubMedGoogle Scholar
  20. 20.
    Pruessmann KP. Parallel imaging at high field strength: synergies and joint potential. Top Magn Reson Imaging. 2004;15(4):237–44.CrossRefPubMedGoogle Scholar
  21. 21.
    Binks DA, Hodgson RJ, Ries ME, Foster RJ, Smye SW, McGonagle D, et al. Quantitative parametric MRI of articular cartilage: a review of progress and open challenges. Br J Radiol. 1023;2013(86):20120163.  https://doi.org/10.1259/bjr.20120163.CrossRefGoogle Scholar
  22. 22.
    Crema MD, Roemer FW, Marra MD, Burstein D, Gold GE, Eckstein F, et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics. 2011;31(1):37–61.  https://doi.org/10.1148/rg.311105084.CrossRefPubMedGoogle Scholar
  23. 23.
    Duc SR, Pfirrmann CW, Schmid MR, Zanetti M, Koch PP, Kalberer F, et al. Articular cartilage defects detected with 3D water-excitation true FISP: prospective comparison with sequences commonly used for knee imaging. Radiology. 2007;245(1):216–23.  https://doi.org/10.1148/radiol.2451060990.CrossRefPubMedGoogle Scholar
  24. 24.
    Menezes NM, Gray ML, Hartke JR, Burstein D. T2 and T1rho MRI in articular cartilage systems. Magn Reson Med. 2004;51(3):503–9.  https://doi.org/10.1002/mrm.10710.CrossRefPubMedGoogle Scholar
  25. 25.
    Poole AR. An introduction to the pathophysiology of osteoarthritis. Front Biosci. 1999;4:D662–70.CrossRefPubMedGoogle Scholar
  26. 26.
    Joseph GB, Baum T, Alizai H, Carballido-Gamio J, Nardo L, Virayavanich W, et al. Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years–data from the osteoarthritis initiative. Osteoarthr Cartil. 2012;20(7):727–35.  https://doi.org/10.1016/j.joca.2012.04.003.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lin W, Alizai H, Joseph GB, Srikhum W, Nevitt MC, Lynch JA, et al. Physical activity in relation to knee cartilage T2 progression measured with 3 T MRI over a period of 4 years: data from the Osteoarthritis Initiative. Osteoarthr Cartil. 2013;21(10):1558–66.  https://doi.org/10.1016/j.joca.2013.06.022.CrossRefPubMedGoogle Scholar
  28. 28.
    Welsch GH, Apprich S, Zbyn S, Mamisch TC, Mlynarik V, Scheffler K, et al. Biochemical (T2, T2* and magnetisation transfer ratio) MRI of knee cartilage: feasibility at ultra-high field (7T) compared with high field (3T) strength. Eur Radiol. 2011;21(6):1136–43.  https://doi.org/10.1007/s00330-010-2029-7.CrossRefPubMedGoogle Scholar
  29. 29.
    Lazik A, Theysohn JM, Geis C, Johst S, Ladd ME, Quick HH, et al. 7 Tesla quantitative hip MRI: T1, T2 and T2* mapping of hip cartilage in healthy volunteers. Eur Radiol. 2016;26(5):1245–53.  https://doi.org/10.1007/s00330-015-3964-0.CrossRefPubMedGoogle Scholar
  30. 30.
    Domayer SE, Apprich S, Stelzeneder D, Hirschfeld C, Sokolowski M, Kronnerwetter C, et al. Cartilage repair of the ankle: first results of T2 mapping at 7.0 T after microfracture and matrix associated autologous cartilage transplantation. Osteoarthr Cartil. 2012;20(8):829–36.  https://doi.org/10.1016/j.joca.2012.04.015.CrossRefPubMedGoogle Scholar
  31. 31.
    Chang G, Xia D, Sherman O, Strauss E, Jazrawi L, Recht MP, et al. High resolution morphologic imaging and T2 mapping of cartilage at 7 Tesla: comparison of cartilage repair patients and healthy controls. MAGMA. 2013;26(6):539–48.  https://doi.org/10.1007/s10334-013-0379-2.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Heule R, Bar P, Mirkes C, Scheffler K, Trattnig S, Bieri O. Triple-echo steady-state T2 relaxometry of the human brain at high to ultra-high fields. NMR Biomed. 2014;27(9):1037–45.  https://doi.org/10.1002/nbm.3152.CrossRefPubMedGoogle Scholar
  33. 33.
    Heule R, Ganter C, Bieri O. Triple echo steady-state (TESS) relaxometry. Magn Reson Med. 2014;71(1):230–7.  https://doi.org/10.1002/mrm.24659.CrossRefPubMedGoogle Scholar
  34. 34.
    Juras V, Zbyn S, Mlynarik V, Szomolanyi P, Hager B, Baer P, et al. The compositional difference between ankle and knee cartilage demonstrated by T2 mapping at 7 Tesla MR. Eur J Radiol. 2016;85(4):771–7.  https://doi.org/10.1016/j.ejrad.2016.01.021.CrossRefPubMedGoogle Scholar
  35. 35.
    Kraff O, Lazik-Palm A, Heule R, Theysohn JM, Bieri O, Quick HH. 7 Tesla quantitative hip MRI: a comparison between TESS and CPMG for T2 mapping. MAGMA. 2016;29(3):503–12.  https://doi.org/10.1007/s10334-016-0557-0.CrossRefPubMedGoogle Scholar
  36. 36.
    Sepponen RE, Pohjonen JA, Sipponen JT, Tanttu JI. A method for T1 rho imaging. J Comput Assist Tomogr. 1985;9(6):1007–11.CrossRefPubMedGoogle Scholar
  37. 37.
    Gilani IA, Sepponen R. Quantitative rotating frame relaxometry methods in MRI. NMR Biomed. 2016;29(6):841–61.  https://doi.org/10.1002/nbm.3518.CrossRefPubMedGoogle Scholar
  38. 38.
    Keenan KE, Besier TF, Pauly JM, Han E, Rosenberg J, Smith RL, et al. Prediction of glycosaminoglycan content in human cartilage by age, T1rho and T2 MRI. Osteoarthr Cartil. 2011;19(2):171–9.  https://doi.org/10.1016/j.joca.2010.11.009.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang L, Chang G, Xu J, Vieira RL, Krasnokutsky S, Abramson S, et al. T1rho MRI of menisci and cartilage in patients with osteoarthritis at 3T. Eur J Radiol. 2012;81(9):2329–36.  https://doi.org/10.1016/j.ejrad.2011.07.017.CrossRefPubMedGoogle Scholar
  40. 40.
    Sharafi A, Xia D, Chang G, Regatte RR. Biexponential T1rho relaxation mapping of human knee cartilage in vivo at 3 T. NMR Biomed. 2017.  https://doi.org/10.1002/nbm.3760.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Singh A, Haris M, Cai K, Kogan F, Hariharan H, Reddy R. High resolution T1rho mapping of in vivo human knee cartilage at 7T. PLoS ONE. 2014;9(5):e97486.  https://doi.org/10.1371/journal.pone.0097486.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci USA. 2008;105(7):2266–70.  https://doi.org/10.1073/pnas.0707666105.CrossRefPubMedGoogle Scholar
  43. 43.
    Schmitt B, Zbyn S, Stelzeneder D, Jellus V, Paul D, Lauer L, et al. Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7 T. Radiology. 2011;260(1):257–64.  https://doi.org/10.1148/radiol.11101841.CrossRefPubMedGoogle Scholar
  44. 44.
    Singh A, Haris M, Cai K, Kassey VB, Kogan F, Reddy D, et al. Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med. 2012;68(2):588–94.  https://doi.org/10.1002/mrm.23250.CrossRefPubMedGoogle Scholar
  45. 45.
    Haris M, Singh A, Reddy S, Bagga P, Kneeland JB, Tjoumakaris FP, et al. Characterization of viscosupplementation formulations using chemical exchange saturation transfer (ViscoCEST). J Transl Med. 2016;14:92.  https://doi.org/10.1186/s12967-016-0850-8.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    • Krishnamoorthy G, Nanga RPR, Bagga P, Hariharan H, Reddy R. High quality three-dimensional gagCEST imaging of in vivo human knee cartilage at 7 Tesla. Magn Reson Med. 2017;77(5):1866-73.  https://doi.org/10.1002/mrm.26265. This recent paper shows the difference in GAG content using gagCEST in patients and controls.
  47. 47.
    Kogan F, Hargreaves BA, Gold GE. Volumetric multislice gagCEST imaging of articular cartilage: optimization and comparison with T1rho. Magn Reson Med. 2017;77(3):1134–41.  https://doi.org/10.1002/mrm.26200.CrossRefPubMedGoogle Scholar
  48. 48.
    Pauly JM, Conolly SI, Nishimura DG, Macovski A, editors. Slice-selective excitation for very short T2 species. Proc 8th Annual Meeting ISMRM; 1989; Amsterdam.Google Scholar
  49. 49.
    Du J, Bydder M, Takahashi AM, Chung CB. Two-dimensional ultrashort echo time imaging using a spiral trajectory. Magn Reson Imaging. 2008;26(3):304–12.  https://doi.org/10.1016/j.mri.2007.08.005.CrossRefPubMedGoogle Scholar
  50. 50.
    Rahmer J, Bornert P, Groen J, Bos C. Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling. Magn Reson Med. 2006;55(5):1075–82.  https://doi.org/10.1002/mrm.20868.CrossRefPubMedGoogle Scholar
  51. 51.
    Grodzki DM, Jakob PM, Heismann B. Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med. 2012;67(2):510–8.  https://doi.org/10.1002/mrm.23017.CrossRefPubMedGoogle Scholar
  52. 52.
    Krug R, Larson PE, Wang C, Burghardt AJ, Kelley DA, Link TM, et al. Ultrashort echo time MRI of cortical bone at 7 tesla field strength: a feasibility study. J Magn Reson Imaging. 2011;34(3):691–5.  https://doi.org/10.1002/jmri.22648.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Juras V, Zbyn S, Pressl C, Valkovic L, Szomolanyi P, Frollo I, et al. Regional variations of T(2)* in healthy and pathologic achilles tendon in vivo at 7 tesla: preliminary results. Magn Reson Med. 2012;68(5):1607–13.  https://doi.org/10.1002/mrm.24136.CrossRefPubMedGoogle Scholar
  54. 54.
    Larson PE, Han M, Krug R, Jakary A, Nelson SJ, Vigneron DB, et al. Ultrashort echo time and zero echo time MRI at 7T. MAGMA. 2016;29(3):359–70.  https://doi.org/10.1007/s10334-015-0509-0.CrossRefPubMedGoogle Scholar
  55. 55.
    • Madelin G, Lee JS, Regatte RR, Jerschow A. Sodium MRI: methods and applications. Prog Nucl Magn Reson Spectrosc. 2014;79:14-47.  https://doi.org/10.1016/j.pnmrs.2014.02.001. A review paper specifically focusing on 23 Na imaging applications.
  56. 56.
    Moon CH, Kim JH, Zhao T, Bae KT. Quantitative (23) Na MRI of human knee cartilage using dual-tuned (1) H/(23) Na transceiver array radiofrequency coil at 7 tesla. J Magn Reson Imaging. 2013;38(5):1063–72.  https://doi.org/10.1002/jmri.24030.CrossRefPubMedGoogle Scholar
  57. 57.
    Wiggins GC, Brown R, Lakshmanan K. High-performance radiofrequency coils for (23)Na MRI: brain and musculoskeletal applications. NMR Biomed. 2016;29(2):96–106.  https://doi.org/10.1002/nbm.3379.CrossRefPubMedGoogle Scholar
  58. 58.
    Pipe JG, Zwart NR, Aboussouan EA, Robison RK, Devaraj A, Johnson KO. A new design and rationale for 3D orthogonally oversampled k-space trajectories. Magn Reson Med. 2011;66(5):1303–11.  https://doi.org/10.1002/mrm.22918.CrossRefPubMedGoogle Scholar
  59. 59.
    Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR. Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med. 2009;62(6):1565–73.  https://doi.org/10.1002/mrm.22157.CrossRefPubMedGoogle Scholar
  60. 60.
    Gurney PT, Hargreaves BA, Nishimura DG. Design and analysis of a practical 3D cones trajectory. Magn Reson Med. 2006;55(3):575–82.  https://doi.org/10.1002/mrm.20796.CrossRefPubMedGoogle Scholar
  61. 61.
    Idiyatullin D, Corum C, Park JY, Garwood M. Fast and quiet MRI using a swept radiofrequency. J Magn Reson. 2006;181(2):342–9.  https://doi.org/10.1016/j.jmr.2006.05.014.CrossRefPubMedGoogle Scholar
  62. 62.
    Weiger M, Pruessmann KP, Hennel F. MRI with zero echo time: hard versus sweep pulse excitation. Magn Reson Med. 2011;66(2):379–89.  https://doi.org/10.1002/mrm.22799.CrossRefPubMedGoogle Scholar
  63. 63.
    Madelin G, Chang G, Otazo R, Jerschow A, Regatte RR. Compressed sensing sodium MRI of cartilage at 7T: preliminary study. J Magn Reson. 2012;214(1):360–5.  https://doi.org/10.1016/j.jmr.2011.12.005.CrossRefPubMedGoogle Scholar
  64. 64.
    Wheaton AJ, Borthakur A, Shapiro EM, Regatte RR, Akella SV, Kneeland JB, et al. Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging–feasibility study. Radiology. 2004;231(3):900–5.  https://doi.org/10.1148/radiol.2313030521.CrossRefPubMedGoogle Scholar
  65. 65.
    Chang G, Madelin G, Sherman OH, Strauss EJ, Xia D, Recht MP, et al. Improved assessment of cartilage repair tissue using fluid-suppressed (2)(3)Na inversion recovery MRI at 7 tesla: preliminary results. Eur Radiol. 2012;22(6):1341–9.  https://doi.org/10.1007/s00330-012-2383-8.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Madelin G, Babb J, Xia D, Chang G, Krasnokutsky S, Abramson SB, et al. Articular cartilage: evaluation with fluid-suppressed 7.0-T sodium MR imaging in subjects with and subjects without osteoarthritis. Radiology. 2013;268(2):481–91.  https://doi.org/10.1148/radiol.13121511.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Clausen T. Na + -K + pump regulation and skeletal muscle contractility. Physiol Rev. 2003;83(4):1269–324.  https://doi.org/10.1152/physrev.00011.2003.CrossRefPubMedGoogle Scholar
  68. 68.
    Chang G, Wang L, Schweitzer ME, Regatte RR. 3D 23Na MRI of human skeletal muscle at 7 tesla: initial experience. Eur Radiol. 2010;20(8):2039–46.  https://doi.org/10.1007/s00330-010-1761-3.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Amarteifio E, Nagel AM, Weber MA, Jurkat-Rott K, Lehmann-Horn F. Hyperkalemic periodic paralysis and permanent weakness: 3-T MR imaging depicts intracellular 23Na overload–initial results. Radiology. 2012;264(1):154–63.  https://doi.org/10.1148/radiol.12110980.CrossRefPubMedGoogle Scholar
  70. 70.
    Kopp C, Linz P, Dahlmann A, Hammon M, Jantsch J, Muller DN, et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension. 2013;61(3):635–40.  https://doi.org/10.1161/HYPERTENSIONAHA.111.00566.CrossRefPubMedGoogle Scholar
  71. 71.
    Chance B, Eleff S, Leigh JS Jr, Sokolow D, Sapega A. Mitochondrial regulation of phosphocreatine/inorganic phosphate ratios in exercising human muscle: a gated 31P NMR study. Proc Natl Acad Sci USA. 1981;78(11):6714–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Kemp GJ, Radda GK. Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. Magn Reson Q. 1994;10(1):43–63.PubMedGoogle Scholar
  73. 73.
    Kuhl CK, Layer G, Traber F, Zierz S, Block W, Reiser M. Mitochondrial encephalomyopathy: correlation of P-31 exercise MR spectroscopy with clinical findings. Radiology. 1994;192(1):223–30.  https://doi.org/10.1148/radiology.192.1.8208943.CrossRefPubMedGoogle Scholar
  74. 74.
    Taylor DJ. Clinical utility of muscle MR spectroscopy. Semin Musculoskelet Radiol. 2000;4(4):481–502.  https://doi.org/10.1055/s-2000-13172.CrossRefPubMedGoogle Scholar
  75. 75.
    Scheuermann-Freestone M, Madsen PL, Manners D, Blamire AM, Buckingham RE, Styles P, et al. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation. 2003;107(24):3040–6.  https://doi.org/10.1161/01.CIR.0000072789.89096.10.CrossRefPubMedGoogle Scholar
  76. 76.
    Schunk K, Romaneehsen B, Rieker O, Duber C, Kersjes W, Schadmand-Fischer S, et al. Dynamic phosphorus-31 magnetic resonance spectroscopy in arterial occlusive disease: effects of vascular therapy on spectroscopic results. Invest Radiol. 1998;33(6):329–35.CrossRefPubMedGoogle Scholar
  77. 77.
    McCully KK, Argov Z, Boden BP, Brown RL, Bank WJ, Chance B. Detection of muscle injury in humans with 31P magnetic resonance spectroscopy. Muscle Nerve. 1988;11(3):212–6.  https://doi.org/10.1002/mus.880110304.CrossRefPubMedGoogle Scholar
  78. 78.
    Bogner W, Chmelik M, Schmid AI, Moser E, Trattnig S, Gruber S. Assessment of (31)P relaxation times in the human calf muscle: a comparison between 3 T and 7 T in vivo. Magn Reson Med. 2009;62(3):574–82.  https://doi.org/10.1002/mrm.22057.CrossRefPubMedGoogle Scholar
  79. 79.
    Parasoglou P, Feng L, Xia D, Otazo R, Regatte RR. Rapid 3D-imaging of phosphocreatine recovery kinetics in the human lower leg muscles with compressed sensing. Magn Reson Med. 2012;68(6):1738–46.  https://doi.org/10.1002/mrm.24484.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Parasoglou P, Xia D, Chang G, Regatte RR. Dynamic three-dimensional imaging of phosphocreatine recovery kinetics in the human lower leg muscles at 3 T and 7 T: a preliminary study. NMR Biomed. 2013;26(3):348–56.  https://doi.org/10.1002/nbm.2866.CrossRefPubMedGoogle Scholar
  81. 81.
    Hooijmans MT, Doorenweerd N, Baligand C, Verschuuren J, Ronen I, Niks EH, et al. Spatially localized phosphorous metabolism of skeletal muscle in Duchenne muscular dystrophy patients: 24-month follow-up. PLoS ONE. 2017;12(8):e0182086.  https://doi.org/10.1371/journal.pone.0182086.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Korzowski A, Bachert P. High-resolution (31) P echo-planar spectroscopic imaging in vivo at 7T. Magn Reson Med. 2018;79(3):1251–9.  https://doi.org/10.1002/mrm.26785.CrossRefPubMedGoogle Scholar
  83. 83.
    Schmid AI, Meyerspeer M, Robinson SD, Goluch S, Wolzt M, Fiedler GB, et al. Dynamic PCr and pH imaging of human calf muscles during exercise and recovery using (31) P gradient-Echo MRI at 7 Tesla. Magn Reson Med. 2016;75(6):2324–31.  https://doi.org/10.1002/mrm.25822.CrossRefPubMedGoogle Scholar
  84. 84.
    Majumdar S. Quantitative study of the susceptibility difference between trabecular bone and bone marrow: computer simulations. Magn Reson Med. 1991;22(1):101–10.CrossRefPubMedGoogle Scholar
  85. 85.
    Majumdar S, Thomasson D, Shimakawa A, Genant HK. Quantitation of the susceptibility difference between trabecular bone and bone marrow: experimental studies. Magn Reson Med. 1991;22(1):111–27.CrossRefPubMedGoogle Scholar
  86. 86.
    Krug R, Carballido-Gamio J, Banerjee S, Burghardt AJ, Link TM, Majumdar S. In vivo ultra-high-field magnetic resonance imaging of trabecular bone micro-architecture at 7 T. J Magn Reson Imaging. 2008;27(4):854–9.  https://doi.org/10.1002/jmri.21325.CrossRefPubMedGoogle Scholar
  87. 87.
    Chang G, Regatte RR, Schweitzer ME. Olympic fencers: adaptations in cortical and trabecular bone determined by quantitative computed tomography. Osteoporos Int. 2009;20(5):779–85.  https://doi.org/10.1007/s00198-008-0730-z.CrossRefPubMedGoogle Scholar
  88. 88.
    Kraff O, Theysohn JM, Maderwald S, Saylor C, Ladd SC, Ladd ME, et al. MRI of the knee at 7.0 tesla. Rofo-Fortschr Rontg. 2007;179(12):1231–5.  https://doi.org/10.1055/s-2007-963607.CrossRefGoogle Scholar
  89. 89.
    Chang G, Friedrich KM, Wang L, Vieira RL, Schweitzer ME, Recht MP, et al. MRI of the wrist at 7 tesla using an eight-channel array coil combined with parallel imaging: preliminary results. J Magn Reson Imaging. 2010;31(3):740–6.  https://doi.org/10.1002/jmri.22072.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Nobauer-Huhmann IM, Pretterklieber M, Erhart J, Bar P, Szomolanyi P, Kronnerwetter C, et al. Anatomy and variants of the triangular fibrocartilage complex and its MR appearance at 3 and 7T. Semin Musculoskelet Radiol. 2012;16(2):93–103.  https://doi.org/10.1055/s-0032-1311761.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rajiv G. Menon
    • 1
  • Gregory Chang
    • 1
  • Ravinder R. Regatte
    • 1
  1. 1.Department of Radiology, Bernard and Irene Schwartz Center for Biomedical ImagingNew York University Langone Medical CenterNew YorkUSA

Personalised recommendations