Current Pediatrics Reports

, Volume 4, Issue 2, pp 28–34 | Cite as

Novel Uses for Three-Dimensional Printing in Congenital Heart Disease

  • Tom Loke
  • Axel Krieger
  • Craig Sable
  • Laura Olivieri
Cardiology (W Lai and W Zuckerman, Section Editors)
Part of the following topical collections:
  1. Cardiology

Abstract

Congenital heart disease affects 1–2 % of the world’s population and is the leading cause of mortality among infants in the US. The diagnosis and management of congenital heart disease are largely driven by review of two-dimensional (2D) images derived from echocardiography, cardiac magnetic resonance, and cardiac computed tomography. However, congenital heart disease is a three-dimensional (3D) problem, and 2D display methods often lack critical spatial information. Cardiologists and cardiovascular surgeons rely on mental conversion of 2D data into a 3D understanding of the spatial relationships of intracardiac structures. Over the last 10 years, significant advances in 3D printing technology have made it possible to create life-like, printed models of any part of the human anatomy, including congenital heart defects. These printed models, placed in an operator’s hands, have the potential to assist in communication of the size, location, and degree of defect and aid in procedural planning. The use of 3D models has the potential to decrease operative procedure times, decrease radiation exposure in the cardiac catheterization laboratory, and overall sedation and anesthetic requirement. In addition, they have considerable educational value wherein defects can be examined from every angle, and the complex 3D relationships of cardiac structures can be displayed in three dimensions and held in the hand.

Keywords

Congenital heart disease 3D printing Cardiac surgery Cardiac imaging 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •• Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation. 2007;115(2):163–72. This reference is required for all pediatricians to understand the impact of congenital heart disease and the extent of complex congenital heart disease that requires intervention. CrossRefPubMedGoogle Scholar
  2. 2.
    Ferencz C, Rubin JD, McCarter RJ, Brenner JI, Neill CA, Perry LW, Hepner SI, Downing JW. Congenital heart disease: prevalence at livebirth. The Baltimore-Washington Infant Study. Am J Epidemiol. 1985;121(1):31–6.PubMedGoogle Scholar
  3. 3.
    Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor H-U, Giesel FL. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335–41.CrossRefPubMedGoogle Scholar
  4. 4.
    Noecker AM, Chen J-F, Zhou Q, White RD, Kopcak MW, Arruda MJ, Duncan BW. Development of patient-specific three-dimensional pediatric cardiac models. ASAIO J. 2006;52(3):349–53.CrossRefPubMedGoogle Scholar
  5. 5.
    Greil GF, Wolf I, Kuettner A, Fenchel M, Miller S, Martirosian P, Schick F, Oppitz M, Meinzer H-P, Sieverding L. Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin Res Cardiol. 2007;96(3):176–85.CrossRefPubMedGoogle Scholar
  6. 6.
    Kurup HK, Samuel BP, Vettukattil JJ. Hybrid 3D printing: a game-changer in personalized cardiac medicine? Expert Rev Cardiovasc Ther. 2015;13(12):1281–4.CrossRefPubMedGoogle Scholar
  7. 7.
    • Ejaz F, Ryan J, Henriksen M, Pophal S, Richardson R, Frakes D. Color-coded patient-specific physical models of congenital heart disease. Rapid Prototyp J. 2014;20:336–43. This reference gives extensive description of process of making congenital heart disease models with 3D printing technology. CrossRefGoogle Scholar
  8. 8.
    Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, Faletra FF, Franke A, Hung J, de Isla LP, Kamp O, Kasprzak JD, Lancellotti P, Marwick TH, McCulloch ML, Monaghan MJ, Nihoyannopoulos P, Pandian NG, Pellikka PA, Pepi M, Roberson DA, Shernan SK, Shirali GS, Sugeng L, Ten Cate FJ, Vannan MA, Zamorano JL, Zoghbi WA, American Society of Echocardiography, European Association of Echocardiography. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25(1):3–46.CrossRefPubMedGoogle Scholar
  9. 9.
    Cossor W, Cui VW, Roberson DA. Three-dimensional echocardiographic en face views of ventricular septal defects: feasibility, accuracy, imaging protocols and reference image collection. J Am Soc Echocardiogr. 2015;28(9):1020–9.CrossRefPubMedGoogle Scholar
  10. 10.
    •• Gerrah R, Bardo DM, Reed RD, Sunstrom RE, Langley SM. Adjustment of the surgical plan in repair of congenital heart disease: the power of cross-sectional imaging and three-dimensional visualization. Congenit Heart Dis. 2014;9(1):E31–6. This reference helps the reader to understand the power of 3D display. CrossRefPubMedGoogle Scholar
  11. 11.
    Nallamshetty L, Dadlani GH, Berlowitz MS. Unrepaired tetralogy of fallot with major aortopulmonary. Congenit Heart Dis. 2011;8:24–30.Google Scholar
  12. 12.
    •• Olivieri LJ, Krieger A, Loke Y-H, Nath DS, Kim PCW, Sable CA. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. J Am Soc Echocardiogr. 2015;28(4):392–7. This is the first paper publishing the process and validation technique for 3D printing heart models from 3D echo, the most versatile of all of the cardiac imaging modalities. CrossRefPubMedGoogle Scholar
  13. 13.
    Riesenkampff E, Rietdorf U, Wolf I, Schnackenburg B, Ewert P, Huebler M, Alexi-Meskishvili V, Anderson RH, Engel N, Meinzer H-P, Hetzer R, Berger F, Kuehne T. The practical clinical value of three-dimensional models of complex congenitally malformed hearts. J Thorac Cardiovasc Surg. 2009;138(3):571–80.CrossRefPubMedGoogle Scholar
  14. 14.
    http://mitk.org/wiki/Interactive_segmentation. Accessed 16 April 2016. This is an interactive guide on the image segmentation process.
  15. 15.
    Hunziker PR, Smith S, Scherrer-Crosbie M, Liel-Cohen N, Levine RA, Nesbitt R, Benton SA, Picard MG. Dynamic holographic imaging of the beating human heart. Circulation. 1999;99(5):1–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Jacobs S, Grunert R, Mohr FW, Falk V. 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact CardioVasc Thorac Surg. 2008;7(1):6–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Mottl-Link S, Hübler M, Kühne T, Rietdorf U, Krueger JJ, Schnackenburg B, De Simone R, Berger F, Juraszek A, Meinzer H-P, Karck M, Hetzer R, Wolf I. Physical models aiding in complex congenital heart surgery. Ann Thorac Surg. 2008;86(1):273–7.CrossRefPubMedGoogle Scholar
  18. 18.
    • Schmauss D, Haeberle S, Hagl C, Sodian R. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience. Eur J Cardiothorac Surg. 2015;47(6):1044–52. This is a robust experience from one clinical center and reviews all previous reports of 3D model utility in cardiology. CrossRefPubMedGoogle Scholar
  19. 19.
    Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD. Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation. 2008;117(18):2388–94.CrossRefPubMedGoogle Scholar
  20. 20.
    Sodian R, Weber S, Markert M, Rassoulian D, Kaczmarek I, Lueth TC, Reichart B, Daebritz S. Stereolithographic models for surgical planning in congenital heart surgery. Ann Thorac Surg. 2007;83(5):1854–7.CrossRefPubMedGoogle Scholar
  21. 21.
    • Ryan JR, Moe TG, Richardson R, Frakes DH, Nigro JJ, Pophal S. A novel approach to neonatal management of tetralogy of Fallot, with pulmonary atresia, and multiple aortopulmonary collaterals. JACC Cardiovasc Imaging. 2015;8(1):103–4. This is a case where 3d models are particularly helpful in a specific disease process and are used in an ongoing manner. CrossRefPubMedGoogle Scholar
  22. 22.
    Olivieri L, Krieger A, Chen MY, Kim P, Kanter JP. 3D heart model guides complex stent angioplasty of pulmonary venous baffle obstruction in a Mustard repair of D-TGA. Int J Cardiol. 2014;172(2):e297–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Lazkani M, Bashir F, Brady K, Pophal S, Morris M, Pershad A. Postinfarct VSD management using 3D computer printing assisted percutaneous closure. Indian Heart J. 2015;67(6):581–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Maragiannis D, Jackson MS, Igo SR, Schutt RC, Connell P, Grande-Allen J, Barker CM, Chang SM, Reardon MJ, Zoghbi WA, Little SH. Replicating patient-specific severe aortic valve stenosis with functional 3D modeling. Circ Cardiovasc Imaging. 2015;8(10):e003626.CrossRefPubMedGoogle Scholar
  25. 25.
    • Olivieri L, Su L, Hynes C, Krieger A, Alfares F, Ramakrishnan K, Zurakowski D, Marshall M, Kim P, Jonas R, Nath D. Just-in-time training using 3D printed cardiac models after congenital cardiac surgery. World J Pediatr Congenit Heart Surg. 2016;7(2):164–8. This is a description of utility of 3D models in preparation of bedside caregivers following heart surgery. CrossRefPubMedGoogle Scholar
  26. 26.
    Hu A, Wilson TD, Ladak H, Haase P, Fung K. Three-dimensional educational computer model of the larynx. Head Neck. 2011;135(7):677–81.Google Scholar
  27. 27.
    Knobe M, Carow JB, Ruesseler M, Leu BM, Simon M, Beckers SK, Ghassemi A, Sönmez TT, Pape H-C. Arthroscopy or ultrasound in undergraduate anatomy education: a randomized cross-over controlled trial. BMC Med Educ. 2012;12(1):85.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Costello J, Olivieri L, Su L, Krieger A, Alfares F, Thabit O, Marshall MB, Yoo S, Kim P, Jonas RA, Nath DS. Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis. 2015;10:185–90.CrossRefPubMedGoogle Scholar
  29. 29.
    Costello JP, Olivieri LJ, Krieger A, Thabit O, Marshall MB, Yoo S-J, Kim PC, Jonas RA, Nath DS. Utilizing three-dimensional printing technology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education. World J Pediatr Congenit Heart Surg. 2014;5(3):421–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Loke Y-H, Krieger A, Harahsheh A, and Olivieri L. A randomized controlled trial of 3D models in pediatric cardiology resident education. Pediatr Acad Soc MeetGoogle Scholar
  31. 31.
    Nelson GN, Mirensky T, Brennan MP, Roh JD, Yi T, Wang Y, Breuer CK. Functional small-diameter human tissue-engineered arterial grafts in an immunodeficient mouse model: preliminary findings. Arch Surg. 2008;143(5):488–94.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    • Melchiorri AJ, Hibino N, Brandes ZR, Jonas RA, Fisher JP. Development and assessment of a biodegradable solvent cast polyester fabric small-diameter vascular graft. J Biomed Mater Res A. 2014;102(6):1972–81. This is an important report of 3D printed material which is implantable and may one day be the basis for heart valves, heart conduits and patch materials used in congenital heart surgery. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhang C, Wen X, Vyavahare NR, Boland T. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique. Biomaterials. 2008;29(28):3781–91.CrossRefPubMedGoogle Scholar
  34. 34.
    Lee SJ, Heo DN, Park JS, Kwon SK, Lee JH, Lee JH, Kim WD, Kwon IK, Park SA. Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a 3D printing system. Phys Chem Chem Phys. 2015;17(5):2996–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Melchiorri AJ, Hibino N, Best CA, Yi T, Lee YU, Kraynak CA, Kimerer LK, Krieger A, Kim P, Breuer CK, Fisher JP. 3D-printed biodegradable polymeric vascular grafts. Adv Healthc Mater. 2015;5:309–25.Google Scholar
  36. 36.
    Yu Y, Zhang Y, Martin JA, Ozbolat IT. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J Biomech Eng. 2013;135(9):91011.CrossRefPubMedGoogle Scholar
  37. 37.
    Duan B, Hockaday LA, Kang KH, Butcher JT. 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013;101A(5):1255–64.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media New York 2016

Authors and Affiliations

  • Tom Loke
    • 1
    • 2
  • Axel Krieger
    • 1
    • 2
  • Craig Sable
    • 1
    • 2
  • Laura Olivieri
    • 1
    • 2
  1. 1.Division of CardiologyChildren’s National Health SystemWashingtonUSA
  2. 2.The Sheikh Zayed Institute for Surgical InnovationChildren’s National Health SystemWashingtonUSA

Personalised recommendations