Advertisement

Journal of Theoretical and Applied Physics

, Volume 10, Issue 1, pp 21–26 | Cite as

Eigensolutions of the Schrödinger equation with a class of Yukawa potentials via supersymmetric approach

  • C. A. OnateEmail author
  • J. O. Ojonubah
Open Access
Research

Abstract

Using the basic concept of the supersymmetric shape invariance approach and formalism, we obtained an approximate solution of the Schrödinger equation with an interaction of inversely quadratic Yukawa potential, Yukawa potential and Coulomb potential which we considered as a class of Yukawa potentials. By varying the potential strengths, we obtained a solution for Hellmann potential, Yukawa potential, Coulomb potential and inversely quadratic Yukawa potential. The numerical results we obtained show that the interaction of these potentials is equivalent to each of the potential.

Keywords

Schrödinger equation Eigensolutions Class of Yukawa potentials 

Introduction

In the recent time, physicists have developed much interest in searching for the exponential-type potentials. The reason is that most of the exponential-type potentials play an important role in physics, e.g. Yukawa potential is used in plasma, solid-state and atomic physics [1]. As a result, many authors have solved both relativistic and non-relativistic wave equations with these potentials. For instance, Zhang et al. [2] obtained approximate solutions of the Schrödinger equation with the Generalized Morse potential model including a centrifugal term. Jia et al. [3] solved six-parameter exponential-type potentials. Onate [4] obtained relativistic and non-relativistic solutions of the inversely quadratic Yukawa potential. Falaye et al. [5] obtained bound state solutions of the Schrödinger equation with Manning–Rosen potential. Hassanabadi et al. [6, 7] obtained Actual and general Manning–Rosen potential under spin and pseudospin symmetries of the Dirac equation; approximate solutions of the Schrödinger equation under Manning–Rosen potential in arbitrary dimensions via SUSY QM. Hamzavi et al. [8] obtained approximate spin and pseudospin solutions of the Dirac equation for inversely quadratic Yukawa potential and tensor interaction. Maghsoodi et al. [1] solved Dirac particles in the presence of Yukawa potential plus a tensor interaction in SUSY QM frame work. Ikhdair [9] obtained on the bound state solutions of the Manning–Rosen potential including an improved approximation to the orbital centrifugal term.

The solutions of the wave equations (either Schrödinger, Klein–Gordon, Dirac or D.K.P.) with any of these exponential-type potentials are obtained using different methods which include: asymptotic iteration method (AIM) [10, 11, 12, 13, 14, 15, 16], Nikiforov–Uvarov (N.U) method [17, 18, 19, 20], exact/proper quantization rule [21], supersymmetric method [22, 23, 24, 25, 26, 27], 1/N shifted expansion method [28], etc.

Motivated by the success in the exponential-type potentials, we attempt to investigate the solutions of the radial Schrödinger equation with a class of Yukawa potentials given as
$$V\left( r \right) = \frac{{ - br + rce^{ - \delta r} - ae^{ - 2\delta r} }}{{r^{2} }},$$
(1)
where a, b and c are potential strength and δ is the screening parameter. The potential is obtained by the addition of Hellmann potential and inversely quadratic Yukawa potential which is equivalent to the interaction of inversely quadratic Yukawa potential, Coulomb potential and Yukawa potential. This potential has its application where its components are useful. It is noted that the exact solution of the radial Schrödinger equation with potential (1) is not possible due to the presence of the inverse square term. Therefore, to obtain an approximate solutions, we employ a suitable approximation scheme. It is found that such approximation proposed by Greene and Aldrich [29]
$$\frac{1}{{r^{2} }} = \frac{{\delta^{2} }}{{\left( {1 - e^{ - \delta r} } \right)^{2} }}.$$
(2)
is a good approximation to the centrifugal/inverse square term which is valid for \(\delta \ll 1\) for a short potential range.

Our work is arranged as follows: in the following section, we obtain the bound state solutions. We present discussion and concluding remarks at the end of the article.

Bound state solutions

To study any quantum physical system, we solve the original Schrödinger equation given as [9, 30, 31]
$$\left( {\frac{{P^{2} }}{2\mu } + V\left( r \right)} \right)\psi_{n,\ell ,m} \left( r \right) = E_{n,\ell } \psi_{n,\ell ,m} \left( r \right),$$
(3)
where \(E_{n,\ell }\) is the energy, μ is the particle mass and V(r) is the potential. Setting the wave functions \(\psi_{n,\ell ,m} \left( r \right) = \frac{{R_{n,\ell } \left( r \right)Y_{\ell ,m} \left( {\theta ,\varphi } \right)}}{r}\), we obtained the following radial Schrödinger equation
$$\left[ {\frac{{{\text{d}}^{2} }}{{{\text{d}}r^{2} }} + \frac{2\mu }{{\hbar^{2} }}\left( {E_{n,\ell } - V\left( r \right)} \right) - \frac{{\ell \left( {\ell + 1} \right)}}{{r^{2} }}} \right]R_{n,\ell } \left( r \right) = 0.$$
(4)
With Eqs. (1) and (2), (4) becomes
$$\frac{{{\text{d}}^{2} R_{n,\ell } \left( r \right)}}{{{\text{d}}r^{2} }} = \left[ {V_{\text{eff}} - E_{\text{eff}} } \right]R_{n,\ell } \left( r \right),$$
(5)
where \(V_{\text{eff}} = \left[ {\frac{2\mu \delta }{{\hbar^{2} }}\left( {a\delta - b + c} \right) + \ell \left( {\ell + 1} \right)\delta^{2} } \right]\frac{{e^{ - \delta r} }}{{1 - e^{ - \delta r} }} - \left[ {\frac{{2\mu a\delta^{2} }}{{\hbar^{2} }} - \ell \left( {\ell + 1} \right)\delta^{2} } \right]\frac{{e^{ - \delta r} }}{{\left( {1 - e^{ - \delta r} } \right)^{2} }}\) and \(- E_{\text{eff}} = - \frac{2\mu \delta }{{\hbar^{2} }}\left( {E_{n,\ell } + b} \right) + \ell \left( {\ell + 1} \right)\delta^{2}\). Since we are dealing with a Schrödinger-like equation that we solved by means of SUSY QM [6, 32, 33, 34, 35], the first step in the SUSY approach is finding the solution of the Riccati equation [6]. Using the shape invariance formalism, it can be easily seen that
$$W^{2} (r) - \frac{{{\text{d}}W(r)}}{{{\text{d}}r}} = V_{\text{eff}} - E_{\text{eff}} ,$$
(6)
whose solution is given as
$$W(r) = A - \frac{{Be^{ - \delta r} }}{{1 - e^{ - \delta r} }},$$
(7)
The ground state wave function \(R_{0,\ell } (r)\) as
$$R_{0,\ell } (r) = \exp \left( { - \int {W(r){\text{d}}r} } \right),$$
(8)
where W(r) is called the superpotential function in supersymmetric quantum mechanics [36, 37, 38]. Substitute Eq. (7) into Eq. (6), we deduce the following relations
$$A^{2} = - E_{\text{eff}} ,$$
(9)
$$B = \frac{2\mu a\delta }{{\hbar^{2} }} - \left( {\ell + 1} \right)\delta ,$$
(10)
$$A = \frac{{2\mu \delta \left( {b - c - a\delta } \right) - \ell \left( {\ell + 1} \right)\delta^{2} - B^{2} }}{2B}.$$
(11)
With Eq. (7), we can construct the two partner potentials as follows:
$$U_{ + } = W^{2} (r) + \frac{{{\text{d}}W(r)}}{{{\text{d}}r}} = A^{2} - \frac{{B(B + 2A)e^{ - \delta r} }}{{1 - e^{ - \delta r} }} + \frac{{B(B + \delta )e^{ - \delta r} }}{{\left( {1 - e^{ - \delta r} } \right)^{2} }},$$
(12)
$$U_{ + } = W^{2} (r) + \frac{{{\text{d}}W(r)}}{{{\text{d}}r}} = A^{2} - \frac{{B(B + 2A)e^{ - \delta r} }}{{1 - e^{ - \delta r} }} + \frac{{B(B - \delta )e^{ - \delta r} }}{{\left( {1 - e^{ - \delta r} } \right)^{2} }}.$$
(13)
Using the shape invariance technique [6, 39, 40, 41, 42], it can readily be shown that the two partner potentials are shape invariant. Therefore, their relationship is written as
$$U_{ + } (r,a_{0} ) = U_{ - } (r,a_{1} ) + T(a_{1} ),$$
(14)
where a 0 is an old set of parameters in which the new set of parameters a 1 is obtained from and T(a 1) is a remainder that is independent of the variable r. Here, B = a 0 via mapping of the form a 1 → a 0 − δa 2 → a 0 − 2δa 3 → a 0 − 3δ. Thus, a generalization is drawn as a n  → a 0 − . In terms of the parameters of the problem, we obtain the following relations:
$$T(a_{1} ) = \left[ {\frac{{2\mu \delta \left( {b - c - a\delta } \right) - \ell \left( {\ell + 1} \right)\delta^{2} - a_{0}^{2} }}{{2a_{0} }}} \right] - \left[ {\frac{{2\mu \delta \left( {b - c - a\delta } \right) - \ell \left( {\ell + 1} \right)\delta^{2} - a_{1}^{2} }}{{2a_{1} }}} \right],$$
(15)
$$T(a_{2} ) = \left[ {\frac{{2\mu \delta \left( {b - c - a\delta } \right) - \ell \left( {\ell + 1} \right)\delta^{2} - a_{1}^{2} }}{{2a_{1} }}} \right] - \left[ {\frac{{2\mu \delta \left( {b - c - a\delta } \right) - \ell \left( {\ell + 1} \right)\delta^{2} - a_{2}^{2} }}{{2a_{2} }}} \right],$$
(16)
$$T(a_{3} ) = \left[ {\frac{{2\mu \delta \left( {b - c - a\delta } \right) - \ell \left( {\ell + 1} \right)\delta^{2} - a_{2}^{2} }}{{2a_{2} }}} \right] - \left[ {\frac{{2\mu \delta \left( {b - c - a\delta } \right) - \ell \left( {\ell + 1} \right)\delta^{2} - a_{3}^{2} }}{{2a_{3} }}} \right],$$
(17)
$$T(a_{n} ) = \left[ {\frac{{2\mu \delta \left( {b - c - a\delta } \right) - \ell \left( {\ell + 1} \right)\delta^{2} - a_{n - 1}^{2} }}{{2a_{n - 1} }}} \right] - \left[ {\frac{{2\mu \delta \left( {b - c - a\delta } \right) - \ell \left( {\ell + 1} \right)\delta^{2} - a_{n}^{2} }}{{2a_{n} }}} \right],$$
(18)
The energy spectral can then be determine as follows:
$$E_{0,\ell }^{ - } = 0,$$
(19)
$$E_{n,\ell }^{ - } = E_{\text{eff}} + E_{0,\ell }^{ - } = \sum\limits_{k = 1}^{n} {T(} a_{k} ) = \left[ {\frac{{2\mu \delta \left( {b - c - a\delta } \right) - \ell \left( {\ell + 1} \right)\delta^{2} - a_{n}^{2} }}{{2a_{n} }}} \right].$$
(20)
This gives energy equation as
$$E_{n,\ell } = \delta \left( {\frac{{\delta \hbar^{2} \ell (\ell + 1)}}{2\mu } - b} \right) - \frac{{\delta^{2} \hbar^{2} }}{2\mu }\left[ {\frac{{\frac{2\mu }{{\delta \hbar^{2} }}\left( {b - c - a\delta } \right) - \left( {n + \ell + 1} \right)^{2} - \ell \left( {\ell + 1} \right)}}{{2\left( {\ell + n + 1} \right)}}} \right]^{2} .$$
(21)

Wave function

To obtain the un-normalized wave function, we define a variable of the form \(y = e^{ - \delta r}\) and substitute it into Eq. (5) to have
$$\frac{{{\text{d}}^{2} R_{n,\ell } (r)}}{{{\text{d}}y^{2} }} + \frac{1}{y}\frac{{{\text{d}}R_{n,\ell } (r)}}{{{\text{d}}y}} + \frac{{Ny^{2} Qy + P}}{{\left( {y\left( {1 - y} \right)} \right)^{2} }}R_{n,\ell } (r) = 0,$$
(22)
where
$$\begin{aligned} P & = \frac{{2\mu (b\delta + E_{{n,\ell }} )}}{{\delta ^{2} \hbar ^{2} }} - \ell (\ell + 1),\; \\ Q & = - \frac{{2\mu (b\delta + c\delta + E_{{n,\ell }} )}}{{\delta ^{2} \hbar ^{2} }}, \\ N & = \frac{{2\mu (a\delta + c\delta ^{2} + 2E_{{n,\ell }} )}}{{\delta ^{2} \hbar ^{2} }} \\ \end{aligned}$$
(23)
Analyzing the asymptotic behavior of Eq. (22) at origin and at infinity, it can be tested that when r → 0(y → 1) and when r → ∞(y → 0) Eq. (22) has a solution
$$R_{n,\ell } (y) = y^{\eta } \left( {1 - y} \right)^{\varepsilon } ,$$
(24)
where
$$\eta = \sqrt { - \frac{{2\mu (b\delta + E_{n,\ell } )}}{{\delta^{2} \hbar^{2} }} + \ell (\ell + 1)} ,$$
(25)
$$\varepsilon = \frac{1}{2} + \frac{1}{2}\sqrt {1 - \frac{2\mu a}{{\delta \hbar^{2} }} + \ell (\ell + 1)} .$$
(26)
Now, taking a trial wave function of the form \(R_{n,\ell } (y) = y^{\eta } \left( {1 - y} \right)^{\varepsilon } f(y)\) and substitute it into Eq. (22), we have
$$f^{''} (y) + f^{'} (y)\frac{2\eta + 1 - y(2\eta + 2\varepsilon + 1)}{y(1 - y)} + f(y)\frac{{\left( {\eta + \varepsilon } \right)^{2} + N}}{y(1 - y)} = 0.$$
(27)
Equation (27) is a differential equation satisfied by the hypergeometric function. Thus, its solution is obtained as:
$$f(y) = {}_{2}F_{1} \left( { - n,n + 2(\eta + \varepsilon );2\eta + 1,y} \right).$$
(28)
Replacing the function f(y) with the hypergeometric function and write a complete radial wave function as:
$$R_{n,\ell } (y) = y^{\eta } \left( {1 - y} \right)^{\varepsilon } {}_{2}F_{1} \left( { - n,n + 2(\eta + \varepsilon );2\eta + 1,y} \right).$$
(29)

Results and discussion

Some special cases of interest are studied here, when a = 0,  our potential (1) reduces to Hellmann potential
$$V\left( r \right) = \frac{{ - b + ce^{ - \delta r} }}{r},$$
(30)
which reduces the energy Eq. (21) to
$$E_{n,\ell } = \delta \left( {\frac{{\delta \hbar^{2} \ell (\ell + 1)}}{2\mu } - b} \right) - \frac{{\delta^{2} \hbar^{2} }}{2\mu }\left[ {\frac{{\frac{2\mu }{{\delta \hbar^{2} }}\left( {b - c} \right) - \left( {n + \ell + 1} \right)^{2} - \ell \left( {\ell + 1} \right)}}{{2\left( {\ell + n + 1} \right)}}} \right]^{2} .$$
(31)
When a = c = 0, the potential (1) reduces to Coulomb potential
$$V\left( r \right) = \frac{ - b}{r},$$
(32)
and the energy Eq. (21) turns to
$$E_{n,\ell } = \delta \left( {\frac{{\delta \hbar^{2} \ell (\ell + 1)}}{2\mu } - b} \right) - \frac{{\delta^{2} \hbar^{2} }}{2\mu }\left[ {\frac{{\frac{2\mu b}{{\delta \hbar^{2} }} - \left( {n + \ell + 1} \right)^{2} - \ell \left( {\ell + 1} \right)}}{{2\left( {\ell + n + 1} \right)}}} \right]^{2} .$$
(33)
When a = b = 0, the potential (1) reduces to Yukawa potential
$$V\left( r \right) = \frac{{ - ce^{ - \delta r} }}{r},$$
(34)
and the energy Eq. (21) turns to
$$E_{n,\ell } = \frac{{\delta^{2} \hbar^{2} \ell (\ell + 1)}}{2\mu } - \frac{{\delta^{2} \hbar^{2} }}{2\mu }\left[ {\frac{{\frac{ - 2\mu c}{{\delta \hbar^{2} }} - \left( {n + \ell + 1} \right)^{2} - \ell \left( {\ell + 1} \right)}}{{2\left( {\ell + n + 1} \right)}}} \right]^{2} .$$
(35)
When b = c = 0, potential (1) reduces to inversely quadratic Yukawa potential
$$V\left( r \right) = \frac{{ - ae^{ - 2\delta r} }}{{r^{2} }},$$
(36)
and the energy Eq. (21) turns to
$$E_{n,\ell } = \frac{{\delta^{2} \hbar^{2} \ell (\ell + 1)}}{2\mu } - \frac{{\delta^{2} \hbar^{2} }}{2\mu }\left[ {\frac{{\frac{ - 2\mu a}{{\hbar^{2} }} - \left( {n + \ell + 1} \right)^{2} - \ell \left( {\ell + 1} \right)}}{{2\left( {\ell + n + 1} \right)}}} \right]^{2} .$$
(37)
In Table 1, we numerically reported the energy eigenvalues for a class of Yukawa potential (\(a = 1 \times 10^{ - 5} ,b = 2 \times 10^{0} , \quad c = - 1 \times 10^{0} )\), Hellmann potential (\(a = 0, b = 2 \times 10^{0} , \;c = - 1 \times 10^{0} )\), Coulomb potential (\(a = 0 = c = 0,\quad b = 3)\) and Yukawa potential (\(a = b = 0, \;c = - 3 \times 10^{0} )\) for 2p, 3p, 3d, 4p, 4d and 4f. In Table 2, we have reported the energy eigenvalues of these potentials for \(n = 0,\quad \in \ell = 0;\) \(n = 1,\quad \ell = 0,1;\) \(n = 2,\; \ell = 0, 1, 2;\) \(n = 3, \; \in \ell = 0, 1, 2, 3\) and \(n = 4,\; \ell = 0, 1, 2, 3, 4.\) In Table 1, energy increases as the screening parameter increases. In Table 2, energy increases as n increases. In Table 3, we compared our result for the Hellmann potential with the result from two other methods.
Table 1

Bound states energy for the class of Yukawa potential \(E_{n,\ell }^{\text{CYP}}\), Hellmann potential \(E_{n,\ell }^{\text{HP}}\), Coulomb potential \(E_{n,\ell }^{\text{CP}}\) and Yukawa potential \(E_{n,\ell }^{\text{YP}}\)

State

\(\delta\)

\(E_{n,\ell }^{\text{CYP}}\)

\(E_{n,\ell }^{\text{HP}}\)

\(E_{n,\ell }^{\text{CP}}\)

\(E_{n,\ell }^{\text{YP}}\)

2p

0.001

−2.2474553

−2.2475002

−2.2485002

−2.2455002

0.005

−2.2374615

−2.2375062

−2.2425062

−2.2275062

0.010

−2.2249805

−2.2250250

−2.2350250

−2.2050250

3p

0.001

−0.9983214

−0.9983347

−0.9993347

−0.9963347

0.005

−0.9916874

−0.9917007

−0.9967007

−0.9817007

0.010

−0.9834563

−0.9834694

−0.9934694

−0.9634694

3d

0.001

−0.9969870

−0.9970003

−0.9980003

−0.9950003

0.005

−0.9849930

−0.9850063

−0.9900063

−0.9750063

0.010

−0.9700120

−0.9700250

−0.9800250

−0.9500250

4p

0.001

−0.5611224

−0.5611281

−0.5621281

−0.5591281

0.005

−0.5556960

−0.5557016

−0.5607016

−0.5457016

0.010

−0.5490507

−0.5490563

−0.5590563

−0.5290563

4d

0.001

−0.5603710

−0.5603766

−0.5613766

−0.5583766

0.005

−0.5519085

−0.5519141

−0.5569141

−0.5419141

0.010

−0.5414008

−0.5414063

−0.5514063

−0.5214063

4f

0.001

−0.5592447

−0.5592503

−0.5602503

−0.5572503

0.005

−0.5462508

−0.5462563

−0.5572563

−0.5362563

0.010

−0.5300196

−0.5300250

−0.5400250

−0.5100250

Table 2

Bound states energy for the class of Yukawa potential \(E_{n,\ell }^{\text{CYP}}\), Hellmann potential \(E_{n,\ell }^{\text{HP}}\), Coulomb potential \(E_{n,\ell }^{\text{CP}}\) and Yukawa potential \(E_{n,\ell }^{\text{YP}}\)

n

\(\ell\)

\(E_{n,\ell }^{\text{CYP}}\)

\(E_{n,\ell }^{\text{HP}}\)

\(E_{n,\ell }^{\text{CP}}\)

\(E_{n,\ell }^{\text{YP}}\)

0

0

−8.9896656

−8.9900250

−9.0000250

−8.9700250

1

0

−2.2400552

−2.2401000

−2.2501000

−2.2201000

1

−0.9834563

−0.9834694

−0.9934694

−0.9634694

2

0

−0.9902117

−0.9902250

−1.0002250

−0.9702250

1

−0.5490507

−0.5490563

−0.5590563

−0.5290563

2

−0.3431582

−0.3431610

−0.3531610

−0.3231610

3

0

−0.5528944

−0.5529000

−0.5629000

−0.5329000

1

−0.3481262

−0.3481290

−0.3581290

−0.3281290

2

−0.2356234

−0.2356250

−0.2456250

−0.2156250

3

−0.1670240

−0.1670250

−0.1770250

−0.1470250

4

0

−0.3506222

−0.3506250

−0.3606250

−0.3306250

1

−0.2391345

−0.2391361

−0.2491361

−0.2191361

2

−0.1709424

−0.1709434

−0.1809434

−0.1509434

3

−0.1260556

−0.1260563

−0.1360563

−0.1060563

4

−0.0948517

−0.0948522

−0.1048522

−0.0748522

Table 3

Ro-vibrational energy spectrum \(\left( { - E_{n,\ell } } \right)\) for the Hellmann potential with \(2m = \hbar = 1,\) \(b = 2\) and \(c = 1\)

State

\(\delta\)

SUSY

NU [43]

AP [43]

2p

0.001

0.063999

0.064000

0.063495

0.005

0.069975

0.070000

0.067377

0.010

0.077400

0.077500

0.072020

3p

0.001

0.029499

0.029279

0.028765

0.005

0.036356

0.035309

0.032480

0.010

0.044869

0.042903

0.036645

3d

0.001

0.029274

0.029388

0.028767

0.005

0.035184

0.035817

0.032526

0.010

0.042403

0.043825

0.036814

4p

0.001

0.017436

0.017128

0.016602

0.005

0.024652

0.023200

0.020100

0.010

0.033606

0.030925

0.023711

4d

0.001

0.017308

0.017180

0.016604

0.005

0.023952

0.023464

0.020142

0.010

0.032056

0.031256

0.023857

4f

0.001

0.017117

0.017311

0.016607

0.005

0.022925

0.024027

0.020206

0.010

0.029825

0.032356

0.024072

Conclusions

We have obtained approximate solutions of the Schrödinger equation by combining inversely quadratic Yukawa potential, Yukawa potential and Coulomb potential. We deduced that from the energy equation of these combined potentials, the energy equation of Hellmann potential as well as these individual potential can be obtained. In Tables 1 and 2, we have numerically reported the equivalence of the energy of these potentials.

References

  1. 1.
    Maghsoodi, E., Hassanabadi, E., Aydoğdu, O.: Dirac particles in the presence of the Yukawa potential plus a tensor interaction in SUSYQM framework. Phys. Scr. 86, 015005 (2012)CrossRefADSGoogle Scholar
  2. 2.
    Zhang, L.H., Li, X.P., Jia, C.S.: Approximate solutions of the Schrödinger equation with the generalized Morse potential model including the centrifugal term. Int. J. Quantum Chem. 111, 1870 (2011)CrossRefGoogle Scholar
  3. 3.
    Jia, C.S., Zeng, X.L., Li, S.C., Sun, L.T., Yang, Q.B.: Six parameter exponential-type potential and the identity for the exponential-type potentials. Commun. Theor. Phys. 37, 523 (2002)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Onate, C.A.: Relativistic and Non-relativistic Solutions of the Inversely Quadratic Yukawa potential. Afr. Rev. Phys. 8, 0046 (2013)Google Scholar
  5. 5.
    Falaye, B.J., Oyewumi, K.J., Ibrahim, T.T., Punyasena, M.A., Onate, C.A.: Bound state solutions of the Manning–Rosen potential. Can. J. Phys. 91, 98 (2013)CrossRefGoogle Scholar
  6. 6.
    Hassanabadi, H., Maghsoodi, E., Zarrinkamar, S., Rahimov, H.: Actual and general Manning-Rosen potentials under spin and speudospin symmetries of the Dirac equation. Can. J. Phys. 90, 633 (2012)CrossRefGoogle Scholar
  7. 7.
    Hassanabadi, H., Lu, L.L., Zarrinkamar, S., Liu, G., Rahimov, H.: Appropriate solutions of Schrodinger equation under Manning-Rosen potential in arbitrary dimensions via SUSYQM. Acta Phys. Pol. A 122, 650 (2012)Google Scholar
  8. 8.
    Hamzavi, M., Ikhdair, S.M., Ita, B.I.: Approximate spin and pseudospin solutions to the Dirac equation for the inversely quadratic Yukawa potential and tensor interaction. Phys. Scr. 85, 045009 (2012)CrossRefADSGoogle Scholar
  9. 9.
    Ikhdair, S.M.: On the bound state solutions of the Manning-Rosen potential including an improved approximation to the orbital centrifugal term. Phys. Scr. 83, 015010 (2011)CrossRefADSGoogle Scholar
  10. 10.
    Bayrak, O., Boztosun, I.: Bound state solutions of the Hulthen potential by using the asymptotic iteration method. Phys. Scr. 76, 92 (2007)CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Soylu, A., Bayrak, O., Boztosun, I.: κ state solutions of the Dirac equation for the Eckart potential with pseudospin and spin symmetry. J. Phys. A: Math. Theor. 41, 065308 (2008)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Bayrak, O., Boztosun, I.: The pseudospin symmetric solution of the Morse potential for any κ state. J. Phys. A: Math. Theor. 40, 11119 (2007)CrossRefADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Soylu, A., Bayrak, O., Boztosun, I.: An approximate solution of Dirac-Hulthen problem with pseudospin and spin symmetry for any κ state. J. Math. Phys. 48, 082302 (2007)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Oyewumi, K.J., Falaye, B.J., Onate, C.A., Oluwadare, O.J., Yahya, W.A.: Thermodynamic properties and approximate solutions of the Schrodinger equation with the shifted Deng-Fan potential model. Mol. Phys. doi: 10.1080/00268976
  15. 15.
    Oyewumi, K.J., Falaye, B.J., Onate, C.A., Oluwadare, O.J., Yahya, W.A.: k state solutions for the fermionic massive spin-1/2 particles interacting with double ring-shaped Kratzer and Oscillator potentials. Int. J. Mod. Phys. E 23, 1450005 (2014)CrossRefADSGoogle Scholar
  16. 16.
    Behere, S.H.: Anharmonicity constants of diatomic molecules for external Rydberg and Dimitreva- Zenevich potential functions. Indian J. Phys. 55B, 272 (1982)Google Scholar
  17. 17.
    Zarrinkamar, S., Rajabi, A.A., Hassanabadi, H., Rahimov, H.: Analytical treatment of the two-body spinless Salpeter equation with the Hulthen potential. Phys. Scr. 84, 065008 (2011)CrossRefADSGoogle Scholar
  18. 18.
    Satare, M.R., Haidari, S.: Spin symmetry of the Dirac equation with the Yukawa potential. Phys. Scr. 81, 065201 (2010)CrossRefADSGoogle Scholar
  19. 19.
    Ikhdair, S.M., Sever, R.: Two approximation schemes to the bound states of the Dirac-Hulthen problem. J. Phys. A Math. Theor. 44, 355301 (2011)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Onate, C.A.: Approximate Solutions of the Non-Relativistic Schrodinger Equation with an Interaction of Coulomb and Hulthen potentials. SOP Trans. Theor. Phys. 1, 118 (2014)CrossRefGoogle Scholar
  21. 21.
    Ikhdair, S.M., Hasna, J.A.: Quantization rule solutions to the Hulthen potential in arbitrary dimension with a new approximation scheme for the centrifugal term. Phys. Scr. 83, 025002 (2011)CrossRefADSGoogle Scholar
  22. 22.
    Wei, G.F., Dong, S.H.: Pseudospin symmetry in the relativistic Manning–Rosen potential including a Pekeris-type approximation to the pseudo-centrifugal term. Phys. Lett. B 686, 288 (2010)CrossRefADSGoogle Scholar
  23. 23.
    Hassanabadi, H., Zarrinkamar, S., Rahimov, H.: Approximate solution of D-dimensional Klein–Gordon equation with Hulthen-type potential via SUSYQM. Commun. Theor. Phys. 56, 423 (2011)CrossRefADSzbMATHGoogle Scholar
  24. 24.
    Jia, C.S., Chen, T., He, S.: Bound state solutions of the Klein-Gordon equation with the improved expression of the Manning-Rosen potential energy model. doi: 10.1016/physleta.2013.01.016
  25. 25.
    Hassanabadi, H., Maghsoodi, E., Zarrinkamar, S., Rahimov, H.: Actual and general Manning-Rosen potentials under spin and pseudospin symmetries of the Dirac equation. Can. J. Phys. 90, 633 (2012)CrossRefGoogle Scholar
  26. 26.
    Hassanabadi, H., Lu, L.L., Zarrinkamar, S., Liu, G., Rahimov, H.: Approximate Solutions of Schrodinger Equation under Manning-Rosen Potential in Arbitrary Dimension via SUSY MQ. Acta Phys. Pol., A 122, 1111 (2012)Google Scholar
  27. 27.
    Onate, C.A.: Bound state solutions of Duffin-Kemmer-Petaiu equation with Yukawa potential. Afr. Rev. Phys. 9, 0033 (2015)Google Scholar
  28. 28.
    Hammed, R.H.: Approximate Solution of the Schrodinger equation with Manning-Rosen potential in Two Dimensions by using the shifted 1/N expansion method. J. Basrah Res. 38, 51 (2012)Google Scholar
  29. 29.
    Greene, R.L., Aldrich, C.: Variational wave functions for a screened Coulomb potential. Phys. Rev. A 14, 2363 (1976)CrossRefADSGoogle Scholar
  30. 30.
    Schiff, L.I.: Quantum Mechanics, 3rd edn. Mc Graw-Hill, New York (1968)Google Scholar
  31. 31.
    Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-Relativistic Theory, 3rd edn. Pergamon, New York (1977)Google Scholar
  32. 32.
    Zhang, L.H., Li, X.P., Jia, C.S.: Few-Body Syst. 52, 11 (2011)Google Scholar
  33. 33.
    Gendenstein, L.E.: Derivation of Exact Spectra of the Schrodinger Equation by means of supersymmetry. J. Exp. Theor. Phys. Lett. 38, 356 (1983)Google Scholar
  34. 34.
    Hassanabadi, H., Maghsoodi, E., Zarrinkamar, S., Rahimov, H.: An Approximate solution of the Dirac equation for Hyperbolic scalar and vector potentials and a Coulomb tensor interaction by SUSY QM. Mod. Phys. Lett. A 26, 2703 (2011)CrossRefADSMathSciNetzbMATHGoogle Scholar
  35. 35.
    Zarrinkamar, S., Rajabi, A.A., Hassanabadi, H.: Dirac equation for the harmonic scalar and vector potentials and linear plus coulomb like tensor potential : the SUSY approach. Ann. Phys. 325, 2522 (2010)CrossRefADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    Cooper, F., Freedman, B.: Aspects of supersymmetric quantum mechanics. Ann. Phys. 146, 262 (1983)CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Onate, C.A.: An approximate solution of dirac equation for second poschl-teller like scalar and vector potentials with a coulomb tensor interaction. Afr. Rev. Phys. 8, 0020 (2013)Google Scholar
  38. 38.
    Ikot, A.N., Maghsoodi, E., Ibanga, E.J., Zarrinkamar, S., Hassanabadi, H.: Spin and pseudospin symmetries of the Dirac equation with shifted Hulthen potential using supersymmetric quantum mechanics. Chin. Phys. B 22, 120302 (2013)CrossRefGoogle Scholar
  39. 39.
    Onate, C.A., Ojonubah, J.O.: Relativistic and Non-relativistic solutions of the generalized Poschl-Teller and Hyperbolical potentials with some Thermodynamic properties. Int. J. Mod. Phys. E 24, 1550020 (2015)CrossRefADSGoogle Scholar
  40. 40.
    Onate, C.A., Oyewumi, K.J., Falaye, B.J.: Approximate Solutions of the Schrodinger with the Hyperbolical potential: Supersymmetric Approach. Few-Body Syst. 55, 61 (2014)CrossRefADSGoogle Scholar
  41. 41.
    Hassanabadi, H., Maghsoodi, E., Zarrinkamar, S.: Dirac equation with vector and scalar cornell potentials and an external magnetic field. Ann. der Physik. Ann. der Phys. 525, 944 (2013)CrossRefADSMathSciNetGoogle Scholar
  42. 42.
    Hassanabadi, H., Maghsoodi, E., Zarrinkamar, S.: Relativistic symmetries of Schioberg and general Manning-Rosen potentials. Commun. Theor. Phys. 58, 807 (2012)CrossRefADSzbMATHGoogle Scholar
  43. 43.
    Hamzavi, M., Thylwe, K.E., Rajabi, A.A.: Approximate Bound states solution of the Hellmann potential. Commun. Theor. Phys. 60, 1 (2013)CrossRefADSzbMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Theoretical Physics Section, Department of PhysicsUniversity of BeninBeninNigeria
  2. 2.Mathematics DepartmentFederal College of Education OkeneOkeneNigeria

Personalised recommendations