Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nano-structured phases of gallium oxide (GaOOH, α-Ga2O3, β-Ga2O3, γ-Ga2O3, δ-Ga2O3, and ε-Ga2O3): fabrication, structural, and electronic structure investigations

  • 10 Accesses


Regardless of much curiosity in the synthesis and diversifying properties of the polymorphs of gallium oxide, they are still unrevealed due to their nanoscale size and structural disorders. In this study, convincing methods have been applied to achieve various phases of gallium oxide (i.e., GaOOH, α-Ga2O3, β-Ga2O3, γ-Ga2O3, δ-Ga2O3, and ε-Ga2O3). X-ray diffraction (XRD) along with Rietveld refinement has been employed to investigate the structural parameters of barely reported phases. Transmission electron microscopy (TEM) images reveal the impact of the protocols of chemical synthesis on the morphology/size of the polymorphs of gallium oxide. Mechanistic discussion on the formation of nano-rod morphology in some of the phases (GaOOH and α-Ga2O3) and nano-particle morphology in other (β-Ga2O3, γ-Ga2O3, δ-Ga2O3 and ε-Ga2O3) phases is also provided by considering the experimental parameters. The existence of Ga3+ ions and their local hybridization with the oxygen is investigated using the X-ray absorption spectroscopy (XAS) at Ga K-edge and conveyed the phase dependence on the hybridization of frontier orbitals.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Lin, H.J., Gao, H., Gao, P.X.: Appl. Phys. Lett. 110, 043101 (2017)

  2. 2.

    Pozina, G., Forsberg, M., Kaliteevski, M.A., Hemmingsson, C.: Sci. Rep. 7, 42132 (2017)

  3. 3.

    Mu, W., Yin, Y., Jia, Z., Wang, L., Sun, J., Wang, M., Tang, C., Hu, Q., Gao, Z., Zhang, J., Lin, N., Veronesi, S., Wang, Z., Zhao, X., Tao, X.: RSC Adv. 7, 21815 (2017)

  4. 4.

    Kim, J., Mastro, M.A., Tadjer, M.J., Kim, J., Appl, A.C.S.: Mater. Interfaces 10, 29724 (2018)

  5. 5.

    Wen, X.H., Ming, H.Q., Zhong, J.G., Bing, L.S., Tao, P., Ming, L.: Nano. Res. Lett. 13, 290 (2018)

  6. 6.

    Chua, D., Kim, S.B., Gordon, R.: AIP Adv. 9, 055203 (2019)

  7. 7.

    Muhammed, M.M., Roldan, M.A., Yamashita, Y., Sahonta, S.L., Ajia, I.A., Iizuka, K., Kuramata, A., Humphreys, C.J., Roqan, I.S.: Sci. Rep. 6, 29747 (2016)

  8. 8.

    Shan, F.K., Liu, G.X., Lee, W.J., Lee, G.H., Kim, I.S., Shin, B.C.: J. Appl. Phys. 98, 023504 (2005)

  9. 9.

    Passlacki, M., Schubert, E.F., Hobson, W.S., Hong, M., Moriya, N., Chu, S., Konstadinidis, K., Mannaerts, J.P., Schnoes, M.L., Zydzik, G.J.: J. Appl. Phys. 77, 686 (1995)

  10. 10.

    Soto, E.R., Connell, O., Dikengil, F., Peters, P.J., Clapham, P.R., Ostroff, G.R.: J. Drug Deliv. 2016, 8520629 (2016)

  11. 11.

    Adams, W.T., Ivanisevic, A.: ACS Omega 4, 6876 (2019)

  12. 12.

    Rodríguez, C.I.M., Álvarez, M.Á.L., Rivera, J.J.F., Arízaga, G.G.C., Michel, C.R.: ECS J. Solid State Sci. Technol. 8, Q3180 (2019)

  13. 13.

    Li, X., Zhen, X., Meng, S., Xian, J., Shao, Y., Fu, X., Li, D.: Environ. Sci. Technol. 47, 9911 (2013)

  14. 14.

    Manandhar, S., Ramana, C.V.: Appl. Phys. Lett. 110, 061902 (2017)

  15. 15.

    Battu, A.K., Manandhar, S., Shutthanandan, V., Ramana, C.V.: Chem. Phys. Lett. 684, 363 (2017)

  16. 16.

    Pearton, S.J., Yang, J., Cary, P.H., Ren, F., Kim, J., Tadjer, M.J., Mastro, M.A.: Appl. Phys. Rev. 5, 011301 (2018)

  17. 17.

    Ghodsi, V., Jin, S., Byers, J.C., Pan, Y., Radovanovic, P.V.: J. Phys. Chem. C 121, 9433 (2017)

  18. 18.

    Roy, R., Hill, V.G., Obson, E.F.: J. Am. Chem. Soc. 74, 719 (1952)

  19. 19.

    Yoshioka, S., Hayashi, H., Kuwabara, A., Oba, F., Matsunaga, K., Tanaka, I.: J. Phys. Condens. Matter 19, 346211 (2007)

  20. 20.

    Qian, H.S., Gunawan, P., Zhang, Y.X., Lin, G.F., Zheng, J.W., Xu, R.: Cryst. Growth Des. 8, 1282 (2008)

  21. 21.

    Mazeina, L., Perkins, F.K., Bermudez, V.M., Arnold, S.P., Prokes, S.M.: Langmuir 26, 13722 (2010)

  22. 22.

    Teng, Y., Song, L.X., Ponchel, A., Yang, Z.K., Xia, J.: Adv. Mater. 26, 6238 (2014)

  23. 23.

    Zhang, X., Zhang, Z., Huang, H., Wang, Y., Tong, N., Lin, J., Liu, D., Wang, X.: Nanoscale 10, 21509 (2018)

  24. 24.

    Gopal, R., Goyal, A., Saini, A., Nagar, M., Sharma, N., Gupta, D.K., Dhayal, V.: Ceram. Int. 44, 19099 (2018)

  25. 25.

    Playford, H.Y., Hannon, A.C., Barney, E.R., Walton, R.I.: Chem. Eur. J. 19, 2803 (2013)

  26. 26.

    Playford, H.Y., Hannon, A.C., Tucker, M.G., Dawson, D.M., Ashbrook, S.E., Kastiban, R.J., Sloan, J., Wolton, R.I.: J. Phys. Chem. C 118, 16188 (2014)

  27. 27.

    Sharma, A., Varshney, M., Shin, H.J., Chae, K.H., Won, S.O.: RSC Adv. 7, 52543 (2017)

  28. 28.

    Ravel, B., Newville, M.: J. Synchrotron Radiat. 12, 537 (2005)

  29. 29.

    Quan, Y., Fang, D., Zhang, X., Liu, S., Huang, K.: Mat. Chem. Phys. 121, 142 (2010)

  30. 30.

    Chen, Y., Xia, X., Liang, H., Abbas, Q., Liu, Y., Du, G.: Cryst. Growth Des. 18, 1147 (2018)

  31. 31.

    Nishi, K., Shimizu, K.I., Tanamatsu, M., Yoshida, H., Satsuma, A., Tanaka, T., Yoshida, S., Hattori, T.: J. Phys. Chem. B 102, 10190 (1998)

  32. 32.

    Samain, L., Jaworski, A., Edén, M., Ladd, D.M., Seo, D.K., Garcia, F.J.G., Häussermann, U.: J. Sol. Stat. Chem. 217, 1 (2014)

  33. 33.

    Paglia, G., Bozin, E.S., Billinge, S.J.L.: Chem. Mater. 18, 3242 (2006)

  34. 34.

    Roehrens, D., Brendt, J., Samuelis, D., Martin, M.: J. Sol. Stat. Chem. 183, 532 (2010)

  35. 35.

    Zinkevich, M., Aldinger, F.: J. Am. Ceram. Soc. 87, 683 (2004)

  36. 36.

    Ethayaraja, M., Bandyopadhyaya, R.: Langmuir 23, 6418 (2007)

  37. 37.

    Vaghayenegar, M., Kermanpur, A., Abbasi, M.H.: Sc. Iran. F 18, 1647 (2011)

  38. 38.

    Viana, B.C., Gonçalves, J.S., dos Santos, V., de Santos, M.R., Longo, E., Santos, F.E.P., de Matos, J.M.E.: J. Braz. Chem. Soc. 24, 1057 (2013)

  39. 39.

    Criado, G.M., Ruiz, J.S., Chu, M.H., Tucoulou, R., López, I., Nogales, E., Mendez, B., Piqueras, J.: Nano Lett. 14, 5479 (2014)

  40. 40.

    Shimizu, K.I., Tanamatsu, M., Nishi, K., Yoshida, H., Satsuma, A., Tanaka, T., Yoshida, S., Hattori, T.: J. Phys. Chem. B 103, 1542 (1999)

  41. 41.

    Ghose, S., Rahman, MdS: J. Vac. Sci. Technol. B 34, 02L109 (2016)

Download references


Aditya Sharma is thankful to the Vice-Chancellor and dean of research, Manav Rachna University Faridabad, for providing financial assistance and constant encouragement/support. He is also thankful to Dr. Jitendra Pal Singh (PAL, Pohang, South Korea) for helping in the collection and analysis of XAS data. This work is also partly supported by the Basic Science Research Program (NRF-2015R1A5A1009962) through the National Research Foundation of Korea (NRF) funded by the Korea government.

Author information

Correspondence to Aditya Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Varshney, M., Saraswat, H. et al. Nano-structured phases of gallium oxide (GaOOH, α-Ga2O3, β-Ga2O3, γ-Ga2O3, δ-Ga2O3, and ε-Ga2O3): fabrication, structural, and electronic structure investigations. Int Nano Lett 10, 71–79 (2020). https://doi.org/10.1007/s40089-020-00295-w

Download citation


  • XRD
  • XAS
  • Polymorphs
  • Ga2O3