Higher-order pathwise theory of fluctuations in stochastic homogenization

  • Mitia DuerinckxEmail author
  • Felix Otto


We consider linear elliptic equations in divergence form with stationary random coefficients of integrable correlations. We characterize the fluctuations of a macroscopic observable of a solution to relative order \(\frac{d}{2}\), where d is the spatial dimension; the fluctuations turn out to be Gaussian. As for previous work on the leading order, this higher-order characterization relies on a pathwise proximity of the macroscopic fluctuations of a general solution to those of the (higher-order) correctors, via a (higher-order) two-scale expansion injected into the “homogenization commutator”, thus confirming the scope of this notion. This higher-order generalization sheds a clearer light on the algebraic structure of the higher-order versions of correctors, flux correctors, two-scale expansions, and homogenization commutators. It reveals that in the same way as this algebra provides a higher-order theory for microscopic spatial oscillations, it also provides a higher-order theory for macroscopic random fluctuations, although both phenomena are not directly related. We focus on the model framework of an underlying Gaussian ensemble, which allows for an efficient use of (second-order) Malliavin calculus for stochastic estimates. On the technical side, we introduce annealed Calderón–Zygmund estimates for the elliptic operator with random coefficients, which conveniently upgrade the known quenched large-scale estimates.


Stochastic homogenization Higher-order homogenization Linear elliptic equation Fluctuations Homogenization commutator 



The work of MD was supported by F.R.S.-FNRS and by the CNRS-Momentum program.


  1. 1.
    Abdulle, A., Pouchon, T.: Effective models and numerical homogenization for wave propagation in heterogeneous media on arbitrary timescales. Preprint. arXiv:1905.09062
  2. 2.
    Aida, S., Stroock, D.: Moment estimates derived from Poincaré and logarithmic Sobolev inequalities. Math. Res. Lett. 1(1), 75–86 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Armstrong, S., Kuusi, T., Mourrat, J.-C.: Quantitative Stochastic Homogenization and Large-Scale Regularity, Volume 352 of Grundlehren der Mathematischen Wissenschaften. Springer, Cham (2019)zbMATHCrossRefGoogle Scholar
  4. 4.
    Armstrong, S.N., Daniel, J.-P.: Calderón–Zygmund estimates for stochastic homogenization. J. Funct. Anal. 270(1), 312–329 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Armstrong, S.N., Kuusi, T., Mourrat, J.-C.: The additive structure of elliptic homogenization. Invent. Math. 208, 999–1154 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Armstrong, S.N., Mourrat, J.-C.: Lipschitz regularity for elliptic equations with random coefficients. Arch. Ration. Mech. Anal. 219(1), 255–348 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Armstrong, S.N., Smart, C.K.: Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. Éc. Norm. Supér. (4) 49(2), 423–481 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes. In: Lectures on Probability Theory (Saint-Flour., 1992), Volume 1581 of Lecture Notes in Mathematics, pp. 1–114. Springer, Berlin (1994)zbMATHGoogle Scholar
  9. 9.
    Bella, P., Fehrman, B., Fischer, J., Otto, F.: Stochastic homogenization of linear elliptic equations: higher-order error estimates in weak norms via second-order correctors. SIAM J. Math. Anal. 49(6), 4658–4703 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bella, P., Giunti, A., Otto, F.: Quantitative stochastic homogenization: local control of homogenization error through corrector. In: Mathematics and Materials, Volume 23 of IAS/Park City Mathematics Series, pp. 301–327. American Mathematical Society, Providence (2017)Google Scholar
  11. 11.
    Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures, Volume 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1978)zbMATHGoogle Scholar
  12. 12.
    Bourgain, J.: On a homogenization problem. J. Stat. Phys. 172(2), 314–320 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Caffarelli, L.A., Peral, I.: On \(W^{1, p}\) estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51(1), 1–21 (1998)zbMATHCrossRefGoogle Scholar
  14. 14.
    Chatterjee, S.: Fluctuations of eigenvalues and second order Poincaré inequalities. Probab. Theory Relat. Fields 143(1–2), 1–40 (2009)zbMATHCrossRefGoogle Scholar
  15. 15.
    Chernoff, H.: A note on an inequality involving the normal distribution. Ann. Probab. 9(3), 533–535 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Duerinckx, M., Fischer, J., Gloria, A.: Scaling limit of the homogenization commutator for Gaussian coefficient fields. Preprint. arXiv:1910.04088
  17. 17.
    Duerinckx, M., Gloria, A., Lemm, M.: A remark on a surprising result by Bourgain in homogenization. Commun. Partial Differ. Equ. 44(12), 1345–1357 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Duerinckx, M., Gloria, A., Otto, F.: Robustness of the pathwise structure of fluctuations in stochastic homogenization. Preprint. arXiv:1807.11781
  19. 19.
    Duerinckx, M., Gloria, A., Otto, F.: The structure of fluctuations in stochastic homogenization. Preprint. arXiv:1602.01717
  20. 20.
    Gloria, A., Neukamm, S., Otto, F.: Quantitative estimates in stochastic homogenization for correlated coefficient fields. Preprint. arXiv:1910.05530
  21. 21.
    Gloria, A., Neukamm, S., Otto, F.: A regularity theory for random elliptic operators. Preprint. arXiv:1409.2678
  22. 22.
    Gloria, A., Neukamm, S., Otto, F.: An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations. M2AN Math. Model. Numer. Anal. 48(2), 325–346 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Gloria, A., Otto, F.: The corrector in stochastic homogenization: optimal rates, stochastic integrability, and fluctuations. Preprint. arXiv:1510.08290
  24. 24.
    Gu, Y.: High order correctors and two-scale expansions in stochastic homogenization. Probab. Theory Relat. Fields 169(3–4), 1221–1259 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Gu, Y., Mourrat, J.-C.: Scaling limit of fluctuations in stochastic homogenization. Multiscale Model. Simul. 14(1), 452–481 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Helffer, B., Sjöstrand, J.: On the correlation for Kac-like models in the convex case. J. Stat. Phys. 74(1–2), 349–409 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)zbMATHCrossRefGoogle Scholar
  28. 28.
    Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. Lond. A 326, 131–146 (1972)zbMATHCrossRefGoogle Scholar
  29. 29.
    Houdré, C., Pérez-Abreu, V.: Covariance identities and inequalities for functionals on Wiener and Poisson spaces. Ann. Probab. 23(1), 400–419 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Jikov, V.V., Kozlov, S.M., Oleĭnik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994). Translated from Russian by G. A. Iosif’yanCrossRefGoogle Scholar
  31. 31.
    Josien, M., Otto, F.: Introduction to stochastic homogenization: oscillations and fluctuations. In preparation (2019)Google Scholar
  32. 32.
    Kamotski, V., Matthies, K., Smyshlyaev, V.P.: Exponential homogenization of linear second order elliptic PDEs with periodic coefficients. SIAM J. Math. Anal. 38(5), 1565–1587 (2006/07)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Kim, J., Lemm, M.: On the averaged Green’s function of an elliptic equation with random coefficients. Preprint. arXiv:1804.10260
  34. 34.
    Kozlov, S.M.: The averaging of random operators. Mat. Sb. (N.S.) 109(151)(2):188–202, 327 (1979)Google Scholar
  35. 35.
    Ledoux, M., Nourdin, I., Peccati, G.: Stein’s method, logarithmic Sobolev and transport inequalities. Geom. Funct. Anal. 25(1), 256–306 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Malliavin, P.: Stochastic Analysis, Volume 313 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1997)Google Scholar
  37. 37.
    Marahrens, D., Otto, F.: Annealed estimates on the Green’s function. Probab. Theory Relat. Fields 163(3–4), 527–573 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Mourrat, J.-C., Otto, F.: Correlation structure of the corrector in stochastic homogenization. Ann. Probab. 44(5), 3207–3233 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Murat, F., Tartar, L.: \(H\)-convergence. In: Topics in the Mathematical Modelling of Composite Materials, Volume 31 of Progress Nonlinear Differential Equations Applications, pp. 21–43. Birkhäuser, Boston (1997)CrossRefGoogle Scholar
  40. 40.
    Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Nourdin, I., Peccati, G.: Stein’s method on Wiener chaos. Probab. Theory Relat. Fields 145(1–2), 75–118 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus. From Stein’s Method to Universality, Volume 192 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2012)Google Scholar
  43. 43.
    Nourdin, I., Peccati, G., Reinert, G.: Second order Poincaré inequalities and CLTs on Wiener space. J. Funct. Anal. 257(2), 593–609 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  45. 45.
    Papanicolaou, G.C., Varadhan, S.R.S.: Boundary value problems with rapidly oscillating random coefficients. In: Random Fields, Vol. I, II (Esztergom, 1979), Volume 27 of Colloq. Math. Soc. János Bolyai, pp. 835–873. North-Holland, Amsterdam (1981)Google Scholar
  46. 46.
    Peccati, G., Reitzner, M. (eds.): Stochastic Analysis for Poisson Point Processes, Volume 7 of Bocconi & Springer Series. Bocconi University Press, Springer, Berlin (2016)Google Scholar
  47. 47.
    Pouchon, T.: Effective models and numerical homogenization methods for long time wave propagation in heterogeneous media. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2017)Google Scholar
  48. 48.
    Shen, Z.: The \(L^p\) boundary value problems on Lipschitz domains. Adv. Math. 216, 212–254 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Shen, Z.: The Calderón-Zygmund lemma revisited. In: Lectures on the Analysis of Nonlinear Partial Differential Equations. Part 2, Volume 2 of Morningside Lecture Notes in Mathematics, pp. 203–224. International Press, Somerville (2012)Google Scholar
  50. 50.
    Sjöstrand, J.: Correlation asymptotics and Witten Laplacians. Algebra Anal. 8(1), 160–191 (1996)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Tran, T.-H., Monchiet, V., Bonnet, G.: A micromechanics-based approach for the derivation of constitutive elastic coefficients of strain-gradient media. Int. J. Solids Struct. 49(5), 783–792 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Mathématique d’Orsay, UMR 8628Université Paris-SudOrsayFrance
  2. 2.Département de MathématiqueUniversité Libre de BruxellesBrusselsBelgium
  3. 3.Max Planck Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations