Advertisement

Invariant measure and large time dynamics of the cubic Klein–Gordon equation in 3D

  • Mouhamadou SyEmail author
Article
  • 13 Downloads

Abstract

In this paper we construct an invariant probability measure concentrated on \(H^2(K)\times H^1(K)\) for a general cubic Klein–Gordon equation (including the case of the wave equation). Here K represents both the 3-dimensional torus or a bounded domain with smooth boundary in \({\mathbb {R}}^3\). That allows to deduce some corollaries on the long time behaviour of the flow of the equation in a probabilistic sense. We also establish qualitative properties of the constructed measure. This work extends the fluctuation–dissipation-limit approach to PDEs having only one (coercive) conservation law.

Keywords

Klein–Gordon equation Wave equation Invariant measure Fluctuation–dissipation Inviscid limit 

Mathematics Subject Classification

28D05 60H30 35B40 35L05 35L71 

Notes

Acknowledgements

I thank Armen Shirikyan, Nikolay Tzvetkov and Laurent Thomann for useful discussions and valuable remarks. I thank referees as well for remarks that have improved the text. This research was supported by the program DIM RDMath of FSMP and Région Ile-de-France.

References

  1. 1.
    Bourgain, J., Bulut, A.: Invariant Gibbs measure evolution for the radial nonlinear wave equation on the 3d ball. J. Funct. Anal. 266(4), 2319–2340 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bourgain, J.: Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys. 166(1), 1–26 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Burq, N., Tzvetkov, N.: Invariant measure for a three dimensional nonlinear wave equation. Int. Math. Res. Not. IMRN (22):Art. ID rnm108, 26 (2007)Google Scholar
  4. 4.
    Burq, N., Tzvetkov, N.: Random data Cauchy theory for supercritical wave equations. II. A global existence result. Invent. Math. 173(3), 477–496 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Burq, N., Tzvetkov, N.: Probabilistic well-posedness for the cubic wave equation. JEMS 16(1), 1–30 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation. Math. Res. Lett. 9(5–6), 659–682 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Colliander, J., Oh, T.: Almost sure well-posedness of the cubic nonlinear Schrödinger equation below \(L^2({\mathbb{T}})\). Duke Math. J. 161(3), 367–414 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Coudène, Y.: Théorie ergodique et systèmes dynamiques. EDP Sciences, Les Ullis (2013)zbMATHGoogle Scholar
  9. 9.
    de Suzzoni, A.-S.: Invariant measure for the Klein–Gordon equation in a non periodic setting. arXiv preprint arXiv:1403.2274 (2014)
  10. 10.
    Koopman, B.: Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. 17(5), 315–318 (1931)CrossRefGoogle Scholar
  11. 11.
    Krengel, U.: Ergodic Theorems, vol. 59. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  12. 12.
    Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. Springer, New York (1991)zbMATHGoogle Scholar
  13. 13.
    Kuksin, S., Shirikyan, A.: Randomly forced CGL equation: stationary measures and the inviscid limit. J. Phys. A Math. Gen. 37, 3805–3822 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kuksin, S., Shirikyan, A.: Mathematics of Two-Dimensional Turbulence. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  15. 15.
    Kuksin, S.: The Eulerian limit for 2D statistical hydrodynamics. J. Stat. Phys. 115(1–2), 469–492 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kuksin, S.: On distribution of energy and vorticity for solutions of 2d Navier–Stokes equation with small viscosity. Commun. Math. Phys. 284(2), 407–424 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Oh, T., Tzvetkov, N.: Quasi-invariant Gaussian measures for the cubic fourth order nonlinear schrödinger equation. Probability Theory and Related Fields, pp. 1–48 (2015)Google Scholar
  18. 18.
    Shirikyan, A.: Local times for solutions of the complex Ginzburg–Landau equation and the inviscid limit. J. Math. Anal. Appl. 384(1), 130–137 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sy, M.: Invariant measure and long time behavior of regular solutions of the Benjamin-Ono equation. arXiv preprint arXiv:1601.05055 (2016)
  20. 20.
    Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis, vol. 106. American Mathematical Society, Providence (2006)zbMATHGoogle Scholar
  21. 21.
    Tao, T.: Lectures on ergodic theory. https://terrytao.wordpress.com/category/teaching/254a-ergodic-theory/ (2008). Accessed 28 Nov 2018
  22. 22.
    Thomann, L.: Invariant Gibbs measures for dispersives PDEs. http://www.iecl.univ-lorraine.fr/~Laurent.Thomann/Gibbs_Thomann_Maiori.pdf (2016). Accessed 28 Nov 2018
  23. 23.
    Tzvetkov, N.: Quasiinvariant Gaussian measures for one-dimensional Hamiltonian partial differential equations. Forum Math. Sigma 3, e28, 35 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Xu, S.: Invariant Gibbs measure for 3D NLW in infinite volume. arXiv preprint arXiv:1405.3856 (2014)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations