Particle system algorithm and chaos propagation related to non-conservative McKean type stochastic differential equations

  • Anthony Le Cavil
  • Nadia Oudjane
  • Francesco Russo


We discuss numerical aspects related to a new class of NonLinear Stochastic Differential Equation (NLSDE) in the sense of McKean, which are supposed to represent non conservative nonlinear Partial Differential Equations (PDEs). We propose an original interacting particle system for which we discuss the propagation of chaos. We consider a time-discretized approximation of this particle system to which we associate a random function which is proved to converge to a solution of a regularized version of a nonlinear PDE.


Chaos propagation Nonlinear Partial Differential Equations McKean type NonLinear Stochastic Differential Equation Particle systems Probabilistic representation of PDEs 

Mathematics Subject Classification

65C05 65C35 68U20 60H10 60H30 60J60 58J35 



The authors are very grateful to the anonymous Referee for her/his careful reading of the paper and the suggestions which have largely contributed to improve the first submitted version. The third named author has benefited partially from the support of the “FMJH Program Gaspard Monge in optimization and operation research” (Project 2014-1607H).


  1. 1.
    Barenblatt, G.I.: On some unsteady motions of a liquid and gas in a porous medium. Akad. Nauk. SSSR Prikl. Mat. Meh. 16, 67–78 (1952)MathSciNetGoogle Scholar
  2. 2.
    Belaribi, N., Cuvelier, F., Russo, F.: A probabilistic algorithm approximating solutions of a singular PDE of porous media type. Monte Carlo Methods Appl. 17(4), 317–369 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Belaribi, N., Cuvelier, F., Russo, F.: Probabilistic and deterministic algorithms for space multidimensional irregular porous media equation. SPDEs Anal. Comput. 1(1), 3–62 (2013)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ben Alaya, M., Jourdain, B.: Probabilistic approximation of a nonlinear parabolic equation occurring in rheology. J. Appl. Probab. 44(2), 528–546 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bertsekas, D.P., Shreve, S.E.: Stochastic optimal control. In: Mathematics in Science and Engineering, vol. 139. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, (1978) (The discrete time case)Google Scholar
  6. 6.
    Bossy, M., Jourdain, B.: Rate of convergence of a particle method for the solution of a 1D viscous scalar conservation law in a bounded interval. Ann. Probab. 30(4), 1797–1832 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bossy, M., Talay, D.: A stochastic particle method for some one-dimensional nonlinear p.d.e. Math. Comput. Simul., 38(1–3):43–50 (1995) (Probabilités numériques (Paris, 1992))Google Scholar
  8. 8.
    Bossy, M., Talay, D.: A stochastic particle method for the McKean–Vlasov and the Burgers equation. Math. Comput. 66(217), 157–192 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bouchard, B., Touzi, N.: Discrete-time approximation and Monte Carlo simulation of backward stochastic differential equations. Stoch. Process. Appl. 111, 175–206 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cheridito, P., Soner, H.M., Touzi, N., Victoir, N.: Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. Commun. Pure Appl. Math. 60(7), 1081–1110 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Crauel, H.: Random probability measures on Polish spaces. In: Stochastics Monographs, vol. 11. Taylor & Francis, London (2002)Google Scholar
  12. 12.
    Del Moral, P.: Feynman-Kac formulae: genealogical and interacting particle systems with applications. In: Probability and Its Applications (New York). Springer-Verlag, New York (2004)Google Scholar
  13. 13.
    Del Moral, P.: Mean field simulation for Monte Carlo integration. In: Monographs on Statistics and Applied Probability, vol. 126. CRC Press, Boca Raton (2013)Google Scholar
  14. 14.
    Gobet, E., Lemor, J.-P., Warin, X.: A regression-based Monte Carlo method to solve backward stochastic differential equations. Ann. Appl. Probab. 15(3), 2172–2202 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Henry-Labordère, P.: Counterparty risk valuation: a marked branching diffusion approach. doi: 10.2139/ssrn.1995503 or (2012)
  16. 16.
    Henry-Labordère, P., Tan, X., Touzi, N.: A numerical algorithm for a class of BSDEs via the branching process. Stoch. Process. Appl. 124(2), 1112–1140 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jourdain, B., Méléard, S.: Propagation of chaos and fluctuations for a moderate model with smooth initial data. Ann. Inst. H. Poincaré Probab. Statist. 34(6), 727–766 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus. In: Graduate Texts in Mathematics, vol. 113, 2nd edn. Springer-Verlag, New York (1991)Google Scholar
  19. 19.
    Kohatsu-Higa, A., Ogawa, S.: Weak rate of convergence for an Euler scheme of nonlinear SDE’s. Monte Carlo Methods Appl. 3(4), 327–345 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Le Cavil, A., Oudjane, N., Russo, F.: Probabilistic representation of a class of non conservative nonlinear partial differential equations. (2015)
  21. 21.
    McKean, H.P., Jr.: Propagation of chaos for a class of non-linear parabolic equations. In: Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967). Air Force Office Sci. Res., Arlington, pp. 41–57 (1967)Google Scholar
  22. 22.
    Pardoux, E.: Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order. In: Stochastic Analysis and Related Topics, VI (Geilo, 1996), vol. 42 of Progr. Probab. Birkhäuser Boston, Boston, MA, pp. 79–127 (1998)Google Scholar
  23. 23.
    Pardoux, É., Peng, S.G.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Pardoux, E., Raşcanu, A.: Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, vol. 69. Springer, Berlin (2014)zbMATHGoogle Scholar
  25. 25.
    Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales, vol. 2. Cambridge Mathematical Library. Cambridge University Press, Cambridge, (2000). (Itôcalculus, Reprint of the second (1994) edition)Google Scholar
  26. 26.
    Silverman, B.W.: Density Estimation forStatistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman & Hall, London (1986)CrossRefGoogle Scholar
  27. 27.
    Sznitman, A-S.: Topics in propagation of chaos. In: École d’Été de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Mathematics, vol. 1464. Springer, Berlin, pp. 165–251 (1991)Google Scholar
  28. 28.
    Talay, D.: Probabilistic numerical methods for partial differential equations: elements of analysis. In: Probabilistic Models for Nonlinear Partial Differential Equations (Montecatini Terme, 1995). Lecture Notes in Mathematics, vol. 1627. Springer, Berlin, pp. 148–196 (1996)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anthony Le Cavil
    • 1
  • Nadia Oudjane
    • 2
  • Francesco Russo
    • 1
  1. 1.ENSTA-ParisTech, Université Paris-Saclay, Unité de Mathématiques Appliquées (UMA)PalaiseauFrance
  2. 2.EDF R&D, and FiME (Laboratoire de Finance des Marchés de l’Energie (Dauphine, CREST, EDF R&D))Clamart CedexFrance

Personalised recommendations