Normal approximation for the net flux through a random conductor

  • James Nolen


We consider solutions of an elliptic partial differential equation in \({\mathbb R}^d\) with a stationary, random conductivity coefficient. The boundary condition on a square domain of width L is chosen so that the solution has a macroscopic unit gradient. We then consider the average flux through the domain. It is known that in the limit \(L \rightarrow \infty \), this quantity converges to a deterministic constant, almost surely. Our main result is about normal approximation for this flux when L is large: we give an estimate of the Kantorovich–Wasserstein distance between the law of this random variable and that of a normal random variable. This extends a previous result of the author (Probab Theory Relat Fields, 2013. doi: 10.1007/s00440-013-0517-9) to a much larger class of random conductivity coefficients. The analysis relies on elliptic regularity, on bounds for the Green’s function, and on a normal approximation method developed by Chatterjee (Ann Probab 36:1584–1610, 2008) based on Stein’s method.


Stochastic homogenization Random media Normal approximation Random conductance 

Mathematics Subject Classification

35B27 35J15 60F05 60H25 



I am grateful to Felix Otto for very helpful discussions. This work was partially funded by Grant DMS-1007572 from the US National Science Foundation.


  1. 1.
    Bal, G., Garnier, J., Motsch, S., Perrier, V.: Random integrals and correctors in homogenization. Asymptot. Anal. 59, 1–26 (2008)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bergin, S.M., Rathmell, A.R., Chen, Y.-H., Charbonneau, P., Li, Z.-Y., Wiley, B.J.: The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4, 1996–2004 (2012)CrossRefGoogle Scholar
  3. 3.
    Biskup, M.: Recent progress on the random conductance model. Probab. Surv. 8, 294–373 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Biskup, M., Salvi, M., Wolff, T.: A central limit theorem for the effective conductance: linear boundary data and small ellipticity contrasts. Commun. Math. Phys. 328, 701–731 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boivin, D.: Tail estimates for homogenization theorems in random media. ESAIM Probab. Stat. 13, 51–69 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bourgeat, A., Piatnitski, A.: Approximations of effective coefficients in stochastic homogenization. Ann. I.H. Poincaré 40, 153–165 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bourgeat, A., Piatnitski, A.: Estimates in probability of the residual between the random and the homogenized soutions of one-dimensional second-order operator. Asympt. Anal. 21, 303–315 (1999)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chatterjee, S.: A new method of normal approximation. Ann. Probab. 36, 1584–1610 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chatterjee, S.: Fluctuations of eigenvalues and second order Poincaré inequalities. Probab. Theory Relat. Fields 143, 1–40 (2009)CrossRefzbMATHGoogle Scholar
  10. 10.
    Conlon, J., Naddaf, A.: Green’s functions for elliptic and parabolic equations with random coefficients. N. Y. J. Math. 6, 153–225 (2000)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Delmotte, T., Deuschel, J.-D.: On estimating the derivatives of symmetric diffusions in stationary random environments, with applications to the \(\nabla \phi \) interface model. Probab. Theory Relat. Fields 133, 358–390 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Efron, B., Stein, C.: The jackknife estimate of variance. Ann. Stat. 9, 586–596 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, New York (2001)zbMATHGoogle Scholar
  14. 14.
    Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton (1983)zbMATHGoogle Scholar
  15. 15.
    Gloria, A., Marahrens, D.: Annealed Estimates on the Green Functions and Uncertainty Quantification. Annales de l’Institut Henri Poincaré—Analyse Non Linéaire (2015)Google Scholar
  16. 16.
    Gloria, A., Neukamm, S., Otto, F.: Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. Invent. Math. (2014). doi: 10.1007/s00222-014-0518-z MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gloria, A.: Fluctuation of solutions to linear elliptic equations with noisy diffusion coefficients. Commun. PDE 38, 304–338 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gloria, A., Otto, F.: An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab. 39, 779–856 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gloria, A., Otto, F.: An optimal error estimate in stochastic homogenization of discrete elliptic equations. Ann. Appl. Probab. 22, 1–28 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gloria, A., Otto, F.: Quantitative results on the corrector equation in stochastic homogenization. J. Eur. Math. Soc. to appear. arxiv:1409.0801
  21. 21.
    Gloria, A., Otto, F.: Quantitative Estimates on the Periodic Approximation of the Corrector in Stochastic Homogenization. Preprint 2014. arxiv:1409.1161
  22. 22.
    Grüter, M., Widman, Kjell-Ove: The Green function for uniformly elliptic equations. Manuscr. Math. 37, 303–342 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Han, Q., Lin, F.: Elliptic Partial Differential Equations, 2nd edn. American Mathematical Society, Courant Lecture Notes (2011)Google Scholar
  24. 24.
    Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, New York (1994)CrossRefGoogle Scholar
  25. 25.
    Komorowski, T., Ryzhik, L.: A sharp bound on the \(L^2\) norm of the solution of a random elliptic difference equation. Commun. Math. Sci. 9, 607–622 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kozlov, S.M.: The averaging of random operators. Math. USSR Sb. 109, 188–202 (1979)MathSciNetGoogle Scholar
  27. 27.
    Marahrens, D., Otto, F.: Annealed Estimates on the Green Function. Preprint 2013. arxiv:1304.4408
  28. 28.
    Meyers, N.: An \(L^p\)-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Super. Pisa Classe Di Sci. 17, 189–206 (1963)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Mourrat, J.-C., Otto, F.: Correlation Structure of the Correcto in Stochastic Homogenization. Preprint 2014. arxiv:1402.1924
  30. 30.
    Naddaf, A., Spencer, T.: Estimates on the Variance of Some Homogenization Problems. Unpublished manuscript (1998)Google Scholar
  31. 31.
    Nolen, J.: Normal approximation for a random elliptic equation. Probab. Theory Relat. Fields (2013). doi: 10.1007/s00440-013-0517-9
  32. 32.
    Nolen, J., Otto, F.: Manuscript in preparationGoogle Scholar
  33. 33.
    Owhadi, H.: Approximation of the effective conductivity of ergodic media by periodization. Probab. Theory Relat. Fields 125, 225–258 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Papanicolaou, G.C., Varadhan, S.R.S.: Boundary Value Problems with Rapidly Oscillating Random Coefficients. Random Fields, vol. I, II, pp. 835–873 (Esztergom, 1979), Colloq. Math. Soc. János Bolyai, 27 North Holland, New York (1979)Google Scholar
  35. 35.
    Rossignol, R.: Noise-Stability and Central Limit Theorems for Effective Resistance of Random Electric Networks. Annals of Probability, to appear (2015)Google Scholar
  36. 36.
    Steele, J.M.: An Efron–Stein inequality for nonsymmetric statistics. Ann. Stat. 14, 753–758 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Stein, C.: Approximate Computation of Expectations. IMS Lecture Notes—Monograph Series 7. IMS, Hayward (1972)Google Scholar
  38. 38.
    Torquato, S.: Random Heterogeneous Materials. Springer, New York (2001)zbMATHGoogle Scholar
  39. 39.
    Wehr, J.: A lower bound on the variance of conductance in random resistor networks. J. Stat. Phys. 86(5,6), 1359–1365 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Yurinskii, V.V.: Averaging of symmetric diffusion in a random medium. Sib. Math. J. 4, 603–613 (1986)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsDuke UniversityDurhamUSA

Personalised recommendations