Advertisement

A framework for integrating stakeholder preferences when deciding on power transmission line corridors

  • Joram SchitoEmail author
  • Joshu Jullier
  • Martin Raubal
Original Article
  • 24 Downloads

Abstract

Decisions about urban space and especially regarding power transmission lines are of great public interest, because their visibility affects citizens for decades. With citizens’ increasing awareness, they expect to be transparently informed, their concerns to be taken seriously and that decision-makers base their decisions rationally on facts and laws. In this paper, we present a 3D Decision Support System (3D DSS) that tackles this issue and allows decision-makers to find an optimal transmission line corridor on such rational basis and by considering stakeholder’s preferences regarding multiple criteria. We examined its reliability regarding the ability of predicting transmission line corridors realistically—as stakeholders would expect them—by carrying out a study in central Switzerland with 10 grid planning experts and government representatives. Moreover, we investigated the extent to which graphic representations may support decision-makers firstly in evaluating a transmission line corridor modeled by the 3D DSS, secondly in considering and improving a human-defined scenario for transmission line planning, and thirdly in changing their opinion about a human-defined path. For this, a questionnaire was statistically evaluated by means of exploratory analysis, correlation analysis, and regression analysis. The results on the investigated visual analytics approach showed that it supports the evaluation of the corridor modeled by the 3D DSS as well as of the scenario defined by the stakeholders. As our new approach allows stakeholders to evaluate a transmission line path they consider to be optimal for land and population, it has a high potential for supporting rational group decision-making when considering different opinions.

Keywords

Multi-criteria decision analysis Group decision-making Geographic information science Visual analytics Power transmission line planning 

Mathematics Subject Classification

90B50 

Notes

Acknowledgements

We would like to thank the participants for their efforts and the time spent on the study, and for supporting our work in this way and helping us obtain results to further improve the investigated approaches.

References

  1. Andrienko G, Andrienko N, Jankowski P, Keim D, Kraak MJ, MacEachren A, Wrobel S (2007) Geovisual analytics for spatial decision support: setting the research agenda. Int J Geogr Inf Sci 21(8):839–857.  https://doi.org/10.1080/13658810701349011 CrossRefGoogle Scholar
  2. Andrienko G, Andrienko N, Demsar U, Dransch D, Dykes J, Fabrikant SI, Jern M, Kraak MJ, Schumann H, Tominski C (2010) Space, time and visual analytics. Int J Geogr Inf Sci 24(10):1577–1600.  https://doi.org/10.1080/13658816.2010.508043 CrossRefGoogle Scholar
  3. Andrienko N, Andrienko G (2003) Informed spatial decisions through coordinated views. Inf Vis 2(4):270–285.  https://doi.org/10.1057/palgrave.ivs.9500058 CrossRefGoogle Scholar
  4. Anwarzai MA, Nagasaka K (2017) Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis. Renew Sustain Energy Rev 71:150–160.  https://doi.org/10.1016/j.rser.2016.12.048 CrossRefGoogle Scholar
  5. Bagli S, Geneletti D, Orsi F (2011) Routeing of power lines through least-cost path analysis and multicriteria evaluation to minimise environmental impacts. Environ Impact Assess Rev 31(3):234–239.  https://doi.org/10.1016/j.eiar.2010.10.003 CrossRefGoogle Scholar
  6. Barzilai J (1998) On the decomposition of value functions. Oper Res Lett 22(4):159–170.  https://doi.org/10.1016/S0167-6377(98)00015-7 CrossRefGoogle Scholar
  7. Belton V, Gear T (1983) On a short-coming of Saaty’s method of analytic hierarchies. Omega 11(3):228–230.  https://doi.org/10.1016/0305-0483(83)90047-6 CrossRefGoogle Scholar
  8. Belton V, Stewart T (2002) Multiple criteria decision analysis: an integrated approach. Springer, DordrechtCrossRefGoogle Scholar
  9. Bevanger K, Bartzke G, Brøseth H, Dahl EL, Gjershaug JO, Hanssen F, Jacobsen KO, Kleven O, Kvaløy P, May R, Meås R, Nygård T, Refsnæs S, Stokke S, Thomassen J (2014) Optimal design and routing of power lines; ecological, technical and economic perspectives (OPTIPOL). Final Report 1012, Norwegian Institute for Nature Research, Trondheim (Norway)Google Scholar
  10. Brans JP, Vincke P (1985) Note-A preference ranking organisation method. Manag Sci 31(6):647–656.  https://doi.org/10.1287/mnsc.31.6.647 CrossRefGoogle Scholar
  11. Cain NL, Nelson HT (2013) What drives opposition to high-voltage transmission lines? Land Use Policy 33:204–213.  https://doi.org/10.1016/j.landusepol.2013.01.003 CrossRefGoogle Scholar
  12. Carver SJ (1991) Integrating multi-criteria evaluation with geographical information systems. Int J Geogr Inf Syst 5(3):321–339.  https://doi.org/10.1080/02693799108927858 CrossRefGoogle Scholar
  13. Ceglarz A, Beneking A, Ellenbeck S, Battaglini A (2017) Understanding the role of trust in power line development projects: evidence from two case studies in Norway. Energy Policy 110:570–580.  https://doi.org/10.1016/j.enpol.2017.08.051 CrossRefGoogle Scholar
  14. Chandio IA, Matori ANB, WanYusof KB, Talpur MAH, Balogun AL, Lawal DU (2013) GIS-based analytic hierarchy process as a multicriteria decision analysis instrument: a review. Arab J Geosci 6(8):3059–3066.  https://doi.org/10.1007/s12517-012-0568-8 CrossRefGoogle Scholar
  15. Chaniotis D, Schmitt L (2018) Ten-year network development plan. Technical Report TYNDP (2018) Executive Report. ENTSO-E AISBL, Brussels (Belgium)Google Scholar
  16. Chen S, Amid D, Shir OM, Limonad L, Boaz D, Anaby-Tavor A, Schreck T (2013) Self-organizing maps for multi-objective pareto frontiers. In: 2013 IEEE pacific visualization symposium, pp 153–160Google Scholar
  17. Clegg M, Ellena K, Ennis D, Vickery C (2016) The hierarchy of laws: understanding and implementing the legal frameworks that govern election. International Foundation for Electoral Systems, Arlington, VAGoogle Scholar
  18. Collischonn W, Pilar JV (2000) A direction dependent least-cost-path algorithm for roads and canals. Int J Geogr Inf Sci 14(4):397–406CrossRefGoogle Scholar
  19. DETEC (2013) Bewertungsschema für Übertragungsleitungen. Federal Department of the Environment, Transport, Energy and Communications DETEC, BernGoogle Scholar
  20. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271CrossRefGoogle Scholar
  21. Eisenführ F, Weber M, Langer T (2010) Rational decision making. Springer, BerlinCrossRefGoogle Scholar
  22. Ekel PY, Lisboa AC, Pereira JG, Vieira DAG, Silva LML, D’Angelo MFSV (2019) Two-stage multicriteria georeferenced express analysis of new electric transmission line projects. Int J Electr Power Energy Syst 108:415–431.  https://doi.org/10.1016/j.ijepes.2019.01.008 CrossRefGoogle Scholar
  23. Eroğlu H, Aydin M (2015) Optimization of electrical power transmission lines’ routing using AHP, fuzzy AHP, and GIS. Turk J Electr Eng Comput Sci 23:1418–1430.  https://doi.org/10.3906/elk-1211-59 CrossRefGoogle Scholar
  24. Çetinkaya C, Özceylan E, Erbaş M, Kabak M (2016) GIS-based fuzzy MCDA approach for siting refugee camp: a case study for southeastern Turkey. Int J Disaster Risk Reduct 18:218–231.  https://doi.org/10.1016/j.ijdrr.2016.07.004 CrossRefGoogle Scholar
  25. Feizizadeh B, Blaschke T, Nazmfar H (2014) GIS-based ordered weighted averaging and Dempster–Shafer methods for landslide susceptibility mapping in the Urmia Lake Basin, Iran. Int J Dig Earth 7(8):688–708CrossRefGoogle Scholar
  26. Feizizadeh B, Omrani K, Aghdam FB (2015) Fuzzy analytical hierarchical process and spatially explicit uncertainty analysis approach for multiple forest fire risk mapping. GI_Forum 1:72–80.  https://doi.org/10.1553/giscience2015s72 CrossRefGoogle Scholar
  27. Gettinger J, Koeszegi ST, Schoop M (2012) Shall we dance? The effect of information presentations on negotiation processes and outcomes. Decis Support Syst 53(1):161–174.  https://doi.org/10.1016/j.dss.2012.01.001 CrossRefGoogle Scholar
  28. Goodchild MF (2001) Issues in Spatially Explicit Modeling. In: Parker DC, Berger T, Manson SM, McConnell WJ (eds) Agent-based models of land-use and land-cover change, vol Report and Review of an International Workshop, Irvine, pp 13–17Google Scholar
  29. Grassi S, Friedli R, Grangier M, Raubal M (2014) A GIS-based process for calculating visibility impact from buildings during transmission line routing. In: Huerta J, Schade S, Granell C (eds) Connecting a digital Europe through location and place. Lecture Notes in Geoinformation and Cartography, Springer, New York, pp 383–402CrossRefGoogle Scholar
  30. Greene R, Devillers R, Luther JE, Eddy BG (2011) GIS-based multiple-criteria decision analysis. Geograph Compass 5(6):412–432.  https://doi.org/10.1111/j.1749-8198.2011.00431.x CrossRefGoogle Scholar
  31. Hedtke S, Pfeiffer MD, Franck C, Dermont C, Stadelmann-Steffen I, Jullier J (2018) HVDC & hybrid HVAC/HVDC overhead line conversion: an acceptance case study. Cigré, pp B2–303Google Scholar
  32. Hogarth RM, Soyer E (2015) Providing information for decision making: contrasting description and simulation. J Appl Res Mem Cognit 4(3):221–228.  https://doi.org/10.1016/j.jarmac.2014.01.005 CrossRefGoogle Scholar
  33. Houston G, Johnson C (2006) EPRI-GTC overhead electric transmission line siting methodology. Technical Report 1013080, Electric Power Research Institute and Georgia Transmission Corporation, Palo Alto, CAGoogle Scholar
  34. Howell DC (2010) Statistical methods for psychology, 7th edn. Wadsworth, Cengage Learning, BelmontGoogle Scholar
  35. Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications: a state-of-the-art survey. Lecture notes in economics and mathematical systems, vol 186. Springer, BerlinCrossRefGoogle Scholar
  36. Jankowski P, Nyerges T (2001) GIS-supported collaborative decision making: results of an experiment. Ann Assoc Am Geogr 91(1):48–70.  https://doi.org/10.1111/0004-5608.00233 CrossRefGoogle Scholar
  37. Jankowski P, Andrienko N, Andrienko G (2001a) Map-centred exploratory approach to multiple criteria spatial decision making. Int J Geogr Inf Sci 15(2):101–127.  https://doi.org/10.1080/13658810010005525 CrossRefGoogle Scholar
  38. Jankowski P, Nyerges T, Nyerges T (2001b) Geographic information systems for group decision making. CRC Press.  https://doi.org/10.4324/9780203484906 CrossRefGoogle Scholar
  39. Jullier J (2016) More acceptance for power lines in Switzerland: an evaluation of the acceptance increasing factors for transmission lines in Switzerland. Master’s thesis, ETH Zurich, Zurich.  https://doi.org/10.3929/ethz-b-000240496
  40. Kiessling F, Nefzger P, Nolasco JF, Kaintzyk U (2003) Overhead power lines: planning, design, construction. Springer, BerlinCrossRefGoogle Scholar
  41. Lami IM, Abastante F, Bottero M, Masala E, Pensa S (2014) Integrating multicriteria evaluation and data visualization as a problem structuring approach to support territorial transformation projects. EURO J Decis Process 2(3):281–312.  https://doi.org/10.1007/s40070-014-0033-x CrossRefGoogle Scholar
  42. Latinopoulos D, Kechagia K (2015) A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renew Energy 78:550–560.  https://doi.org/10.1016/j.renene.2015.01.041 CrossRefGoogle Scholar
  43. Laugwitz B, Held T, Schrepp M (2008) Construction and evaluation of a user experience questionnaire. In: Holzinger A (ed) HCI and usability for education and work. Lecture notes in computer science, vol LNCS 5298, Springer, Berlin, pp 63–76Google Scholar
  44. Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 22(140):55Google Scholar
  45. Longley PA, Goodchild MF, Maguire DJ, Rhind DW (2015) Geographic information systems and science, 4th edn. Wiley, HobokenGoogle Scholar
  46. Luain C, Figueroa L, Penserini P (2017) Environmental issues. In: Papailiou KO (ed) Overhead lines. Springer, Cham, pp 277–340.  https://doi.org/10.1007/978-3-319-31747-26
  47. Malczewski J (1999) GIS and multicriteria decision analysis. Wiley, New YorkGoogle Scholar
  48. Malczewski J (2004) GIS-based land-use suitability analysis: a critical overview. Progress Plan 62(1):3–65.  https://doi.org/10.1016/j.progress.2003.09.002 CrossRefGoogle Scholar
  49. Malczewski J (2006) GIS-based multicriteria decision analysis: a survey of the literature. Int J Geogr Inf Sci 20(7):703–726.  https://doi.org/10.1080/13658810600661508 CrossRefGoogle Scholar
  50. Malczewski J, Rinner C (2015) Multicriteria decision analysis in geographic information science. Advances in geographic information science. Springer, BerlinCrossRefGoogle Scholar
  51. Maran S, Garofalo E, Molinengo V, Patt A, Scolobig A, Späth L, Amodeo E, Luè A, Muratori S, Schalbart P, Ceglarz A, Beneking A, Ellenbeck S, Battaglini A, Schneider T, Hildebrand J (2017) INSPIRE-Grid: improved and enhanced stakeholders participation in reinforcement of electricity grid. Final Synthesis Report 608472, RSE (Ricerca sul Sistema Energetico) SpA, Milano (Italy)Google Scholar
  52. Monteiro C, Ramirez-Rosado IJ, Miranda V, Zorzano-Santamaria PJ, Garcia-Garrido E, Fernandez-Jimenez LA (2005) GIS spatial analysis applied to electric line routing optimization. IEEE Trans Power Deliv 20(2):934–942.  https://doi.org/10.1109/TPWRD.2004.839724 CrossRefGoogle Scholar
  53. Mourmouris JC, Potolias C (2013) A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: a case study Thassos, Greece. Energy Policy 52:522–530.  https://doi.org/10.1016/j.enpol.2012.09.074 CrossRefGoogle Scholar
  54. Myers JL, Well AD, Forch RF (2010) Research design and statistical analysis, vol 3, edition edn. Routledge, New YorkGoogle Scholar
  55. Rheinert P (1999) Freileitungen minimaler Sichtbarkeit und deren gleichzeitige Optimierung nach mehreren Kriterien. Dissertation, Universität Saarbrücken, Saarbrücken (Germany)Google Scholar
  56. Rikalovic A, Cosic I, Lazarevic D (2014) GIS based multi-criteria analysis for industrial site selection. Proc Eng 69:1054–1063.  https://doi.org/10.1016/j.proeng.2014.03.090 CrossRefGoogle Scholar
  57. Roy B, Vanderpooten D (1996) The European school of MCDA: emergence, basic features and current works. J Multi-Crit Decis Anal 5(1):22–38.  https://doi.org/10.1002/(SICI)1099-1360(199603)5:1<22::AID-MCDA93>3.0.CO;2-F CrossRefGoogle Scholar
  58. Saaty TL, Vargas LG (2013) Decision making with the analytic network process: economic, political, social and technological applications with benefits, opportunities, costs and risks. International series in operations research and management science, vol 195, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  59. Schito J (2017) Modeling and optimizing transmission lines with GIS and multi-criteria decision analysis. Inf Technol 59(1):1–9.  https://doi.org/10.1515/itit-2016-0057 CrossRefGoogle Scholar
  60. Schito J, Wissen Hayek U, Raubal M (2018) Enhanced multi criteria decision analysis for planning power transmission lines. In: Winter S, Griffin A, Sester M (eds) Proceedings 10th international conference on geographic information science (GIScience 2018), LIPICS, Melbourne (Australia), vol 114.  https://doi.org/10.4230/LIPIcs.GIScience.2018.15
  61. Schmidt AJ (2009) Implementing a GIS methodology for siting high voltage electric transmission lines. Pap Resour Anal 11(2):58–63Google Scholar
  62. Schoinas K (2018) Planning earth cables with GIS. Master’s thesis, ETH Zurich, Institute of Cartography and Geoinformation, ZurichGoogle Scholar
  63. Seifi H, Sepasian MS (2011) Network expansion planning, a basic approach. In: Electric power system planning, Springer, New York, pp 133–154Google Scholar
  64. Sánchez-Lozano JM, Henggeler Antunes C, García-Cascales MS, Dias LC (2014) GIS-based photovoltaic solar farms site selection using ELECTRE-TRI: Evaluating the case for Torre Pacheco, Murcia, Southeast of Spain. Renew Energy 66:478–494.  https://doi.org/10.1016/j.renene.2013.12.038 CrossRefGoogle Scholar
  65. Soltani A, Hewage K, Reza B, Sadiq R (2015) Multiple stakeholders in multi-criteria decision-making in the context of municipal solid waste management: a review. Waste Manag 35:318–328.  https://doi.org/10.1016/j.wasman.2014.09.010 CrossRefGoogle Scholar
  66. Spieker A (2018) Stakeholder dialogues and virtual reality for the German Energiewende. J Dispute Resolut 2018(1)Google Scholar
  67. Späth L, Amodeo E, Luè A, Muratori S, Scolobig A, Patt A (2018) Stakeholder engagement and multi-criteria decision aiding in the electricity transmission grid reinforcement: evidence from a role-playing game. J Environ Plan Manag 61(13):2378–2395.  https://doi.org/10.1080/09640568.2017.1395317 CrossRefGoogle Scholar
  68. Swiss Federal Council (1966) Federal Nature Conservation Act (NHG)Google Scholar
  69. Swiss Federal Council (1994) Regulation on the planning approval procedure for electrical systems (VPeA)Google Scholar
  70. Swiss Federal Council (1996) Regulation on mire landscape protection (Moorlandschaftsverordnung)Google Scholar
  71. Swiss Federal Council (1999a) Regulation on the protection against non-ionizing radiation (NISV)Google Scholar
  72. Swiss Federal Council (1999b) Swiss federal constitution (BV)Google Scholar
  73. Swiss Federal Council (2017a) Federal act on the conversion and expansion of the electricity grid (BBl 2017 7909)Google Scholar
  74. Swiss Federal Council (2017b) Regulation on the federal inventory on landscapes and natural monuments (VBLN)Google Scholar
  75. Veronesi F, Schito J, Grassi S, Raubal M (2017) Automatic selection of weights for GIS-based multicriteria decision analysis: site selection of transmission towers as a case study. Appl Geograph 83:78–85CrossRefGoogle Scholar
  76. Wind Y, Saaty TL (1980) Marketing applications of the analytic hierarchy process. Manag Sci 26(7):641–658CrossRefGoogle Scholar
  77. Yager RR (1988) On ordered weighted averaging aggregation operators in multicriteria decision-making. IEEE Trans Syst Man Cybern 18(1):183–190.  https://doi.org/10.1109/21.87068 CrossRefGoogle Scholar

Copyright information

© EURO - The Association of European Operational Research Societies and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ETH ZurichInstitute of Cartography and GeoinformationZurichSwitzerland
  2. 2.SwissgridAarauSwitzerland

Personalised recommendations