EURO Journal on Decision Processes

, Volume 5, Issue 1–4, pp 169–194 | Cite as

Supporting the multi-criteria decision aiding process: R and the MCDA package

  • Sébastien Bigaret
  • Richard E. Hodgett
  • Patrick MeyerEmail author
  • Tatiana Mironova
  • Alexandru-Liviu Olteanu
Original Article


Reaching a decision when multiple, possibly conflicting, criteria are taken into account is often a difficult task. This normally requires the intervention of an analyst to aid the decision maker in following a clear methodology with respect to the steps that need to be taken, as well as the use of different algorithms and software tools. Most of these tools focus on one or a small number of algorithms, some are difficult to adapt and interface with other tools, while only a few belong to dynamic communities of contributors allowing them to expand in use and functionality. In this paper, we address these issues by proposing to use the R statistical environment and the MCDA package of decision aiding algorithms and tools. This package is meant to provide a wide range of MCDA algorithms that may be used by an analyst to tailor a decision aiding process to their needs, while the choice of R takes advantage of the yet poorly explored opportunity to interface data analysis and decision aiding. We additionally demonstrate the use of this tool on a practical application following a well-defined decision aiding process.


MCDA Decision aiding process 

Mathematics Subject Classification

90 68 


  1. Baizyldayeva U, Vlasov O, Kuandykov AA, Akhmetov TB et al (2013) Multi-criteria decision support systems: comparative analysis. Middle-East J Sci Res 16(12):1725–1730Google Scholar
  2. Belton V, Stewart T (2002) Multiple criteria decision analysis: an integrated approach. Springer, New YorkCrossRefGoogle Scholar
  3. Bisdorff R, Dias LC, Meyer P, Pirlot M, Mousseau V (2015) Evaluation and decision models with multiple criteria: case studies. International handbooks on information systems. Springer, BerlinGoogle Scholar
  4. Bogetoft P, Otto L (2015) Benchmarking-benchmark and frontier analysis using DEA and SFA.
  5. Bouyssou D, Marchant T, Pirlot M, Perny P, Tsoukiàs A, Vincke P (2000) Evaluation and decision models: a critical perspective. Kluwer, DordrechtCrossRefGoogle Scholar
  6. Bouyssou D, Marchant T, Pirlot M, Tsoukiàs A, Vincke P (2006) Evaluation and decision models with multiple criteria: stepping stones for the analyst, 1st edn. International series in operations research and management science, vol 86. Springer, BostonGoogle Scholar
  7. Clemen RT, Reilly T (2001) Making hard decision with decision tools. South-Western Cengage Learning, Mason, OHGoogle Scholar
  8. Coutinho-Rodrigues J, Simão A, Antunes CH (2011) A gis-based multicriteria spatial decision support system for planning urban infrastructures. Decis Support Syst 51(3):720–726CrossRefGoogle Scholar
  9. Dias LC, Mousseau V (2003) IRIS: a DSS for multiple criteria sorting problems. J Multi-Criteria Decis Anal 12(4–5):285–298CrossRefGoogle Scholar
  10. Figueira J, Greco S, Ehrgott M (2005) Multiple criteria decision analysis: state of the art surveys, vol 78. Springer, BerlinCrossRefGoogle Scholar
  11. Gentry J, Long L, Gentleman R, Falcon S, Hahne F, Sarkar D, Rgraphviz KH (2009) Provides plotting capabilities for R graph objects. R package version 2.16.0Google Scholar
  12. Gentry J, Gentleman R, Huber W (2016) How to plot a graph using rgraphviz. https://www.bioconductororg/packages/release/bioc/vignettes/Rgraphviz/inst/doc/Rgraphviz.pdf
  13. Grabisch M, Kojadinovic I, Meyer P (2006) Using the Kappalab R package for capacity identification in choquet integral based maut. In: Proceedings of the 11th international conference on information processing and management of uncertainty in knowledge-based systems, pp 1702–1709Google Scholar
  14. Grabisch M, Kojadinovic I, Meyer P (2015) kappalab-non-additive measure and integral manipulation functions.
  15. Guitouni A, Martel JM, Vincke P, North P, Val-bblair O (1998) A framework to choose a discrete multicriterion aggregation procedure. Defence research establishment valcatier (DREV)Google Scholar
  16. Hodgett RE (2016) Comparison of multi-criteria decision-making methods for equipment selection. Int J Adv Manuf Technol 85(5):1145–1157. doi: 10.1007/s00170-015-7993-2 CrossRefGoogle Scholar
  17. Hodgett RE, Martin EB, Montague G, Talford M (2014) Handling uncertain decisions in whole process design. Production Plan Control 25(12):1028–1038. doi: 10.1080/09537287.2013.798706 CrossRefGoogle Scholar
  18. Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications a state-of-the-art survey. Lecture notes in economics and mathematical systems. Springer, New YorkGoogle Scholar
  19. IEEE Spectrum (2016) The 2016 top programming languages.
  20. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5(3):299–314Google Scholar
  21. International Society on Multiple Criteria Decision Making (2014) Multiple criteria decision making website.
  22. Ishizaka A, Nemery P (2013) Multi-method platforms. Methods and software, multi-criteria decision analysis. Wiley, New York, pp 275–287Google Scholar
  23. Jacquet-Lagrèze E, Siskos Y (1982) Assessing a set of additive utility functions for multicriteria decision making: the UTA method. Eur J Oper Res 10:151–164CrossRefGoogle Scholar
  24. Keeney R, Raiffa H (1976) Decisions with multiple objectives: preferences and value tradeoffs. J. Wiley, New YorkGoogle Scholar
  25. Kostkowski M, Slowinski R (1996) UTA+ application (v. 1.20)-user’s manual. Document du LAMSADE 95Google Scholar
  26. Lahdelma R, Salminen P, Hokkanen J (2014) Using multicriteria methods in environmental planning and management. Environ Manage 26(6):595–605. doi: 10.1007/s002670010118 CrossRefGoogle Scholar
  27. Leistedt B (2011) UTAR library for MCDA.
  28. Leroy A, Mousseau V, Pirlot M (2011) Learning the parameters of a multiple criteria sorting method. In: Brafman RI, Roberts FS, Tsoukiàs A (eds) ADT. Lecture Notes in Computer Science, vol 6992. Springer, New York, pp 219–233Google Scholar
  29. Make It Rational (2016) Make it rational website.
  30. Mayag B, Cailloux O, Mousseau V (2011) Mcda tools and risk analysis: the decision deck project. In: Advances in safety, reliability and risk management: ESREL 2011, p 377Google Scholar
  31. Meyer P, Bigaret S (2012) Diviz: a software for modeling, processing and sharing algorithmic workflows in MCDA. Intell Decis Technol 6(4):283–296. doi: 10.3233/IDT-2012-0144 CrossRefGoogle Scholar
  32. Meyer P, Bigaret S (2012b) RXMCDA—functions to parse and create XMCDA files.
  33. Meyer P, Olteanu AL (2017) Integrating large positive and negative performance differences into multicriteria majority-rule sorting models. Comput Oper Res 81:216–230CrossRefGoogle Scholar
  34. Meyer P, Bigaret S, Hodgett R, Olteanu AL (2017) MCDA: functions to support the multicriteria decision aiding process.
  35. Mousseau V, Slowinski R, Zielniewicz P (1999) ELECTRE TRI 2.0 a methodological guide and user’s manual. Document du LAMSADE, vol 111. Universite Paris, Dauphine, pp 263–275Google Scholar
  36. Mousseau V, Slowinski R, Zielniewicz P (2000) A user-oriented implementation of the ELECTRE-TRI method integrating preference elicitation support. Comput Oper Res 27(7):757–777CrossRefGoogle Scholar
  37. Mustajoki J, Marttunen M (2013) Comparison of multi-criteria decision analytical software. Finnish Environment Institute, HelsinkiGoogle Scholar
  38. Papamichail KN, French S (2013) 25 years of MCDA in nuclear emergency management. IMA J Manag Math 24(4):481–503CrossRefGoogle Scholar
  39. Piatetsky G (2016) R, Python duel as top analytics, data science software—kdnuggets 2016 software poll results.
  40. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0,
  41. Roy B (1991) The outranking approach and the foundations of electre methods. Theor Decis 31(1):49–73. doi: 10.1007/BF00134132 CrossRefGoogle Scholar
  42. Roy B (1996) Multicriteria methodology for decision aiding. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  43. Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resource allocation (Decision making series). Mcgraw-Hill, New YorkGoogle Scholar
  44. Simon HA (1976) Administrative behavior; a study of decision-making processes in administrative organization. 3rd edn. Oxford University Press, OxfordGoogle Scholar
  45. Siraj S, Mikhailov L, Keane JA (2015) Contribution of individual judgments toward inconsistency in pairwise comparisons. Eur J Oper Res 242(2):557–567. doi: 10.1016/j.ejor.2014.10.024 CrossRefGoogle Scholar
  46. Sobrie O, Mousseau V, Pirlot M (2013) Learning a majority rule model from large sets of assignment examples. In: ADT. Lecture Notes in Computer Science, vol 8176. Springer, Berlin, pp 336–350Google Scholar
  47. Statistical Design Institute (2016) Topsis website.
  48. Taillandier P, Stinckwich S (2011) Using the promethee multi-criteria decision making method to define new exploration strategies for rescue robots. In: 2011 IEEE international symposium on safety, security, and rescue robotics, pp 321–326. doi: 10.1109/SSRR.2011.6106747
  49. Tervonen T (2012) JSMAA: open source software for smaa computations. Int J Syst Sci 2012:1–13Google Scholar
  50. TransparentChoice Ltd (2016) Transparent choice website.
  51. Tsoukias A (2007) On the concept of decision aiding process: an operational perspective. Ann Oper Res 154:3–27CrossRefGoogle Scholar
  52. Tversky A, Kahneman D (1981) The framing of decisions and the psychology of choice. Science 211(4481):453–458CrossRefGoogle Scholar
  53. Venables B, Smith D, Gentleman R, Ihaka R (1998) Notes on R: a programming environment for data analysis and graphics. University of AucklandGoogle Scholar
  54. von Winterfeldt D, Edwards W (1986) Decision analysis and behavorial research. Cambridge University Press, CambridgeGoogle Scholar
  55. Wahlster P, Goetghebeur M, Kriza C, Niederländer C, Kolominsky-Rabas P (2015) Balancing costs and benefits at different stages of medical innovation: a systematic review of multi-criteria decision analysis (MCDA). BMC Health Serv Res 15(1):1–12CrossRefGoogle Scholar
  56. Weistroffer HR, Smith CH, Narula SC (2005) Multiple criteria decision support software. In: Multiple criteria decision analysis: state of the art surveys. Springer, Berlin, pp 989–1009Google Scholar
  57. Yatsalo B, Didenko V, Gritsyuk S, Sullivan T (2015) Decerns: a framework for multi-criteria decision analysis. Int J Comput Intell Syst 8(3):467–489CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and EURO - The Association of European Operational Research Societies 2017

Authors and Affiliations

  1. 1.IMT Atlantique, Lab-STICC, Univ. Bretagne LoireBrestFrance
  2. 2.Leeds University Business School, Maurice Keyworth BuildingThe University of LeedsLeedsUK

Personalised recommendations