Advertisement

Linearization criteria for two-dimensional systems of third-order ordinary differential equations by complex approach

  • Hina M. Dutt
  • M. Safdar
  • Asghar QadirEmail author
Open Access
Article
  • 26 Downloads

Abstract

Linearization criteria for two-dimensional systems of second-order ordinary differential equations (ODEs) have been derived earlier using complex symmetry analysis. For such systems, the linearizable form, linearization criteria and symmetry group classification are presented. In this paper, we extend the complex approach to obtain a complex-linearizable form of two-dimensional systems of third-order ODEs. This form leads to a linearizable class and linearization criteria of these systems of ODEs.

Mathematics Subject Classification

34A05 35A24 76M60 93C15 

Notes

Acknowledgements

Two of us (HMD and AQ) are grateful to the Higher Education Commission of Pakistan for support under their Project No. 3054.

References

  1. 1.
    Ali, S.: Complex Symmetry Analysis. PhD Thesis, National University of Sciences and Technology (2008)Google Scholar
  2. 2.
    Ali, S.; Mahomed, F.M.; Qadir, A.: Linearization criteria for systems of two second order differential equations by complex methods. Nonlinear Dyn. 66, 77 (2011)CrossRefGoogle Scholar
  3. 3.
    Ali, S.; Safdar, M.; Qadir, A.: Linearization from complex Lie point transformations. J. Appl. Math. 2014, 793247 (2014)MathSciNetGoogle Scholar
  4. 4.
    Bagderina, Y.Y.: Linearization criteria for a system of two second order ordinary differential equations. J. Phys. A 46, 465201 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chern, S.S.: The geometry of the differential equation $y^{\prime \prime \prime \prime }=F(x,y,y^{\prime \prime },y^{\prime \prime \prime })$. Tensor N.S. 28, 173 (1940)Google Scholar
  6. 6.
    Dutt, H.M.; Safdar, M.: Linearization of two dimensional complex-linearizable systems of second order ordinary differential equations. Appl. Math. Sci. 9, 2889 (2015)Google Scholar
  7. 7.
    Grebot, G.: The characterization of third order ordinary differential equations admitting a transitive fibre-preserving point symmetry group. J. Math. Anal. Appl. 206, 364 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ibragimov, N.H.; Meleshko, S.V.: Linearization of third order ordinary differential equations by point and contact transformations. J. Math. Anal. Appl. 308, 266 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ibragimov, N.H.; Meleshko, S.V.; Suksern, S.: Linearization of fourth-order ordinary differential equations by point transformations. J. Phys. A Math. Theor. 41, 235206 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lie, S.: Theorie der transformationsgruppen. Math. Ann. 16, 441 (1880)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lie, S.: Klassifikation und integration von gewönlichen differentialgleichungenzwischen $x, y$, die eine Gruppe von transformationen gestaten. Arch. Math. VIII, IX, 187 (1883)Google Scholar
  12. 12.
    Mahomed, F.M.; Leach, P.G.L.: Symmetry Lie algebras of $n$th order ordinary differential equations. J. Math. Anal. Appl. 151, 80 (1990)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mahomed, F.M.: Point symmetry group classification of ordinary differential equation: a survey of some results. Math. Methods Appl. Sci. 30, 1995 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mahomed, F.M.; Qadir, A.: Linearization criteria for a system of second-order quadratically semi-linear ordinary differential equations. Nonlinear Dyn. 48, 417 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mahomed, F.M.; Qadir, A.: Invariant linearization criteria for systems of cubically semi-linear second order ordinary differential equations. J. Nonlinear Math. Phys. 16, 1 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Neut, S.; Petitot, M.: La géométrie de l’équation $y^{\prime \prime \prime }=f(x, y, y^{\prime }, y^{\prime \prime })$. C. R. Acad. Sci. Paris Sér I(335), 515 (2002)CrossRefGoogle Scholar
  17. 17.
    Sookmee, S.; Meleshko, S.V.: Linearization of two second-order ordinary differential equations via fibre preserving point transformations. ISRN Math. Anal. 2011, 452689 (2001)zbMATHGoogle Scholar
  18. 18.
    Sookmee, S.; Meleshko, S.V.: Conditions for linearization of a projectable system of two second order ordinary differential equations. J. Phys. A 41, 402001 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Suksern, S.; Meleshko, S.V.; Ibragimov, N.H.: Criteria for fourth order ordinary differential equations to be linearizable by contact transformations. Commun. Nonlinear Sci. Numer. Simul. 14, 2619 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tressé, A.: Sur les Invariants differentiels des groupes continus de transformations. Acta. Math. 18, 1 (1894)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wafo Soh, C.; Mahomed, F.M.: Linearization criteria for a system of second order ordinary differential equations. Int. J. Nonlinear Mech. 36, 671 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Basic SciencesSchool of Electrical Engineering and Computer ScienceIslamabadPakistan
  2. 2.School of Mechanical and Manufacturing EngineeringIslamabadPakistan
  3. 3.Physics DepartmentSchool of Natural SciencesIslamabadPakistan
  4. 4.National University of Sciences and TechnologyIslamabadPakistan

Personalised recommendations