An exploration of quintic Hermite splines to solve Burgers’ equation

  • Shelly Arora
  • Inderpreet KaurEmail author
  • Wudneh Tilahun
Open Access


An innovative scheme of collocation having quintic Hermite splines as base functions has been followed to solve Burgers’ equation. The scheme relies on approximation of Burgers’ equation directly in non-linear form without using Hopf–Cole transformation (Hopf in Commun Pure Appl Math 3:201–216, 1950; Cole in Q Appl Math 9:225–236, 1951). The significance of the numerical technique is demonstrated by comparing the numerical results to the exact solution and published results (Asaithambi in Appl Math Comput 216:2700–2708, 2010; Mittal and Jain in Appl Math Comput 218:7839–7855, 2012). Five problems with different initial conditions have been examined to validate the efficiency and accuracy of the scheme. Euclidean and supremum norms have been reckoned to scrutinize the stability of the numerical scheme. Results have been demonstrated in plane and surface plots to indicate the effectiveness of the scheme.

Mathematics Subject Classification

35B25 65N35 65N12 



Mrs. Inderpreet Kaur is thankful to DST for providing INSPIRE fellowship (IF140424).


  1. 1.
    Abbasbandy, S.; Darvishi, M.T.: A numerical solution of Burgers’ equation by modified adomain method. Appl. Math. Comput. 163, 1265–1272 (2005)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aksan, E.N.: A numerical solution of Burgers’ equation by finite element method constructed on the method of discretization in time. Appl. Math. Comput. 170, 895–904 (2005)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Arora, S.; Kaur, I.: Applications of Quintic Hermite collocation with time discretization to singularly perturbed problems. Appl. Math. Comput. 316, 409–421 (2018)MathSciNetGoogle Scholar
  4. 4.
    Arora, S.; Kaur, I.: An efficient scheme for numerical solution of Burgers’ equation using quintic hermite interpolating polynomials. Arab. J. Math. 5, 23–34 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Arora, S.; Kaur, I.; Potůček, F.: Modelling of Displacement washing of Pulp fibers using the Hermite collocation method. Br. J. Chem. Eng. 32, 563–575 (2015)CrossRefGoogle Scholar
  6. 6.
    Arora, G.; Singh, B.K.: Numerical solution of Burgers’ equation with modified cubic B-spline differential quadrature method. Appl. Math. Comput. 224, 166–177 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Asaithambi, A.: Numerical solution of the Burgers’ equation by automatic differentiation. Appl. Math. Comput. 216, 2700–2708 (2010)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Burger, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chen, F.; Wong, P.J.Y.: Error estimates for discrete spline interpolation: quintic and biquintic splines. J. Comput. Appl. Math. 236, 3835–3854 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cole, J.D.: On a quasi-linear parabolic equation occurring in aerodynamics. Q. Appl. Math. 9, 225–236 (1951)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dağ, İ.; Irk, D.; Saka, B.: A numerical solution of the Burgers’ equation using cubic B-splines. Appl. Math. Comput. 163, 199–211 (2005)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Dyksen, W.R.; Lynch, R.E.: A new decoupling technique for the Hermite cubic collocation equations arising from boundary value problems. Math. Comput. Simul. 54, 359–372 (2000)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Finden, W.F.: Higher order approximations using interpolation applied to collocation solutions of two-point boundary value problems. J. Comput. Appl. Math. 206, 99–115 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gülsu, M.; Yalman, H.; Öztürk, Y.; Sezer, M.: A new Hermite collocation method for solving differential difference equations. Appl. Appl. Math. 6, 1856–1869 (2011)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hall, C.A.: On error bounds for spline interpolation. J. Approx. Theory 1, 209–218 (1968)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hopf, E.: The partial differential equation \(u_{t}+uu_{x}=\nu u_{xx}\). Commun. Pure Appl. Math. 3, 201–216 (1950)CrossRefGoogle Scholar
  17. 17.
    Inc, M.: On numerical solution of Burgers’ equation by homotopy analysis method. Phys. Lett. A 372, 356–360 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kadalbajoo, M.K.; Awasthi, A.: A numerical method based on Crank–Nicolson scheme for Burgers’ equation. Appl. Math. Comput. 182, 1430–1442 (2006)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kutluay, S.; Esen, A.; Dag, I.: Numerical solutions of the Burgers’ equation by the least-squares quadratic B-spline finite element method. J. Comput. Appl. Math. 167, 21–33 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kutluay, S.; Bahadir, A.R.; Özdeş, A.: Numerical Solution of one-dimensional Burgers equation: explicit and exact–explicit finite difference methods. J. Comput. Appl. Math. 103, 251–261 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lang, A.W.; Sloan, D.M.: Hermite collocation solution of near-singular problems using numerical coordinate transformations based on adaptivity. J. Comput. Appl. Math. 140, 499–520 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Liao, W.: An implicit fourth-order compact finite difference scheme for one-dimensional Burgers’ equation. Appl. Math. Comput. 206, 755–764 (2008)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Liu, X.; Liu, G.R.; Tai, K.; Lam, K.Y.: Radial point interpolation collocation method (RPICM) for partial differential equations. Comput. Math. Appl. 50, 1425–1442 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ma, H.; Sun, W.; Tang, T.: Hermite spectral methods with a time-dependent scaling for parabolic equations in unbounded domains. SIAM J. Numer. Anal. 43, 58–75 (2006)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mittal, R.C.; Jain, R.K.: Numerical solutions of non-linear Burgers’ equation with modified cubic B-splines collocation method. Appl. Math. Comput. 218, 7839–7855 (2012)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Orsini, P.; Power, H.; Lees, M.: The Hermite radial basis function control volume method for multi-zones problems; A non-overlapping domain decomposition algorithm. Comput. Methods Appl. Mech. Eng. 200, 477–493 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Özis, T.; Esen, A.; Kutluay, S.: Numerical solution of Burgers’ equation by quadratic B-spline finite elements. Appl. Math. Comput. 165, 237–249 (2005)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Pandey, K.; Verma, L.; Verma, A.K.: Du Fort-Frankel finite difference scheme for Burgers equation. Arab. J. Math. 2, 91–101 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ricciardi, K.L.; Brill, S.H.: Optimal Hermite collocation applied to a one-dimensional convection–diffusion equation using an adaptive hybrid optimization algorithm. Int. J. Numer. Methods Heat Fluid Flow 19, 874–893 (2009)CrossRefGoogle Scholar
  30. 30.
    Wood, W.L.: An exact solution for Burger’ s equation. Commun. Numer. Methods Eng. 22, 797–798 (2006)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Xu, M.; Wang, R.; Zhang, J.; Fang, Q.: A novel numerical scheme for solving Burgers’ equation. Appl. Math. Comput. 217, 4473–4482 (2011)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Yalçinbaş, S.; Aynigül, M.; Sezer, M.: A collocation method using Hermite polynomials for approximate solution of pantograph equations. J. Franklin Inst. 348, 1128–1139 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsPunjabi UniversityPatialaIndia
  2. 2.Department of MathematicsDebre Tabor UniversityDebre TaborEthiopia

Personalised recommendations