Advertisement

Forward–backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators

  • Vahid Dadashi
  • Mihai PostolacheEmail author
Open Access
Article
  • 54 Downloads

Abstract

In this paper, we construct a forward–backward splitting algorithm for approximating a zero of the sum of an \(\alpha \)-inverse strongly monotone operator and a maximal monotone operator. The strong convergence theorem is then proved under mild conditions. Then, we add a nonexpansive mapping in the algorithm and prove that the generated sequence converges strongly to a common element of a fixed points set of a nonexpansive mapping and zero points set of the sum of monotone operators. We apply our main result both to equilibrium problems and convex programming.

Mathematics Subject Classification

47H05 47H09 

Notes

References

  1. 1.
    Alber, Y.; Yao, J.C.: Another version of the proximal point algorithm in a Banach space. Nonlinear Anal. 70, 3159–3171 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aoyama, K.; Kimura, Y.; Takahashi, W.; Toyoda, M.: On a strongly nonexpansive sequence in Hilbert spaces. J. Nonlinear Convex Anal. 8, 471–489 (2007)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Boikanyo, O.A.; Morosanu, G.: A proximal point algorithm converging strongly for general errors. Optim. Lett. 4, 635–641 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Boikanyo, O.A.: The viscosity approximation forward-backward splitting method for zeros of the sum of monotone operators. Abstr. Appl. Anal. 2016, 2371857 (2016).  https://doi.org/10.1155/2016/2371857 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bruck, R.E.; Passty, G.B.: Almost convergence of the infinite product of resolvents in Banach spaces. Nonlinear Anal. 3, 279–282 (1979)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Burachik, R.S.; Scheimberg, S.: A proximal point method for the variational inequality problem in Banach spaces. SIAM J. Control Optim. 39, 1633–1649 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chang, S.S.; Lee, H.J.; Chan, C.K.: A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal. Theory Methods Appl. 70(9), 3307–3319 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cho, S.Y.; Qin, X.; Kang, S.M.: Iterative processes for common fixed points of two different families of mappings with applications. J. Glob. Optim. 57, 1429–1446 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, vol. 62. Mathematics and Its ApplicationsKluwer Academic Publishers, Dordrecht (1990)CrossRefGoogle Scholar
  10. 10.
    Dadashi, V.: Shrinking projection algorithms for the split common null point problem. Bull. Aust. Math. Soc. 96, 299–306 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dadashi, V.: On a hybrid proximal point algorithm in Banach spaces. Univ. Politeh. Buchar. Ser. A 80(3), 45–54 (2018)MathSciNetGoogle Scholar
  12. 12.
    Dadashi, V.; Khatibzadeh, H.: On the weak and strong convergence of the proximal point algorithm in reflexive Banach spaces. Optimization 66(9), 1487–1494 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dadashi, V.; Postolache, M.: Hybrid proximal point algorithm and applications to equilibrium problems and convex programming. J. Optim. Theory Appl. 174(2), 518–529 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Goebel, K.; Kirk, W.A.: Topics in Metric Fixed Point Theory, vol. 28. Cambridge Studies in Advanced MathematicsCambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  15. 15.
    Hadjisavvas, N.I.; Khatibzadeh, H.: Maximal monotonicity of bifunctions. Optimization 59(2), 147–160 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kamimura, S.; Takahashi, W.: Weak and strong convergence of solutions to accretive operator inclusions and applications. Set Valued Anal. 8, 361–374 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kang, S.; Cho, S.; Liu, Z.: Convergence of iterative sequences for generalized equilibrium problems involving inverse-strongly monotone mappings. J. Inequal. Appl. 2010(1), 827082 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Khatibzadeh, H.: Some remarks on the proximal point algorithm. J. Optim. Theory Appl. 153, 769–778 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kinderlehrer, D.; Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)zbMATHGoogle Scholar
  20. 20.
    Li, L.; Song, W.: Modified proximal point algorithm for maximal monotone operators in Banach spaces. J. Optim. Theory Appl. 138, 45–64 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Liu, L.S.: Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 194(1), 114–125 (1995)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lv, S.: Generalized systems of variational inclusions involving (A, \(\eta \))-monotone mappings. Adv. Fixed Point Theory 1(1), 15 (2011)Google Scholar
  23. 23.
    Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Française Informat. Recherche Opérationnelle 3, 154–158 (1970)zbMATHGoogle Scholar
  24. 24.
    Matsushita, S.; Xu, L.: On convergence of the proximal point algorithm in Banach spaces. Proc. Am. Math. Soc. 139, 4087–4095 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Moudafi, A.: On the regularization of the sum of two maximal monotone operators. Nonlinear Anal. Theory Methods Appl. 42(7), 1203–1208 (2000)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Moudafi, A.: On the convergence of the forward-backward algorithm for null-point problems. J. Nonlinear Var. Anal. 2, 263–268 (2018)Google Scholar
  27. 27.
    Moudafi, A.; Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155(2), 447–454 (2003)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Moudafi, A.; Thera, M.: Finding a zero of the sum of two maximal monotone operators. J. Optim. Theory Appl. 94(2), 425–448 (1997)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Nadezhkina, N.; Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 128, 191–201 (2006)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72(2), 383–390 (1979)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Qin, X.; Su, Y.: Approximation of a zero point of accretive operator in Banach spaces. J. Math. Anal. Appl. 329, 415–424 (2007)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Qin, X.; Cho, Y.J.; Kang, S.M.: Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces. J. Comput. Appl. Math. 225(1), 20–30 (2009)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Qin, X.; Cho, S.Y.; Wang, L.: A regularization method for treating zero points of the sum of two monotone operators. Fixed Point Theory Appl. 2014, 75 (2014).  https://doi.org/10.1186/1687-1812-2014-75
  34. 34.
    Rockafellar, R.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33(1), 209–216 (1970)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Rockafellar, R.T.: Maximal monotone operators and proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)CrossRefGoogle Scholar
  36. 36.
    Rouhani, B.D.; Khatibzadeh, H.: On the proximal point algorithm. J. Optim. Theory Appl. 137, 411–417 (2008)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Schu, J.: Weak and strong convergence to fixed points of a asymptotically nonexpansive mappings. Bull. Aust. Math. Soc. 43, 153–159 (1991)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Suzuki, T.: Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces. Fixed Point Theory Appl. 2005, 103–123 (2005)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Takahashi, W.: Approximating solutions of accretive operators by viscosity approximation methods in Banach spaces. In: Applied Functional Analysis, pp. 225–243, Yokohama Publishers, Yokohama (2007)Google Scholar
  40. 40.
    Takahashi, S.; Takahashi, W.; Toyoda, M.: Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147(1), 2741 (2010)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Tian, C.; Wang, F.: The contraction-proximal point algorithm with square-summable errors. Fixed Point Theory Appl. 2013, 93 (2013).  https://doi.org/10.1186/1687-1812-2013-93 MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Tseng, P.: A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Wang, F.; Cui, H.: On the contraction-proximal point algorithms with multi-parameters. J. Glob. Optim. 54(3), 485–491 (2012)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Wang, F.; Cui, H.: Convergence of the generalized contraction-proximal point algorithm in a Hilbert space. Optimization 64(4), 709–715 (2015)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Yao, Y.; Noor, M.A.: On convergence criteria of generalized proximal point algorithms. J. Comput. Appl. Math. 217(1), 46–55 (2008)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Yao, Y.; Shahzad, N.: Strong convergence of a proximal point algorithm with general errors. Optim. Lett. 6(4), 621–628 (2012)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Yuan, H.: A splitting algorithm in a uniformly convex and 2-uniformly smooth Banach space. J. Nonlinear Funct. Anal. 2018, 26 (2018).  https://doi.org/10.23952/jnfa.2018.26
  48. 48.
    Zhang, S.; Lee, J.H.W.; Chan, C.K.: Algorithms of common solutions to quasi variational inclusion and fixed point problems. Appl. Math. Mech. Engl. Ed. 29(5), 571581 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Mathematics, Sari BranchIslamic Azad UniversitySariIran
  2. 2.China Medical UniversityTaichungTaiwan
  3. 3.Institute of Mathematical Statistics and Applied MathematicsRomanian AcademyBucharestRomania
  4. 4.Department of Mathematics and Computer ScienceUniversity Politehnica of BucharestBucharestRomania

Personalised recommendations