Advertisement

Some remarks on wave solutions in general relativity theory

  • Graham HallEmail author
Open Access
Article
  • 43 Downloads

Abstract

This paper reviews the concept of pp-waves and plane waves in classical general relativity theory. The first four sections give discussions of some algebraic constructions and symmetry concepts which will be needed in what is to follow. The final sections deal with the definitions of such wave solutions, their associated geometrical tensors in space–time and their Killing, homothetic, conformal and wave surface symmetries. Some unusual geometrical features of these solutions (compared with standard positive definite geometry) are described.

Mathematics Subject Classification

83C20 83C35 

Notes

References

  1. 1.
    Alexeevski, D.: Self similar Lorentzian manifolds. Ann. Glob. Anal. Geom. 3, 59–84 (1985)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Beem, J.K.: Proper homothetic maps and fixed points. Lett. Math. Phys. 2, 317–320 (1978)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bel, L.: Les états de radiation et le problème de l’énergie en relativité générale. Cah. de. Phys. 16, 59–80 (1962)Google Scholar
  4. 4.
    Bel, L.: Radiation states and the problem of energy in general relativity. Gen. Relat. Gravit. 32, 2047–2078 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brinkmann, H.W.: Einstein spaces which are mapped conformally on each other. Math. Ann. 94, 119–145 (1925)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Defrise, L.: Groupes d’isotropie et groupes de stabilite conforme dans les espaces Lorentziens. Thesis, Universite Libre de Bruxelles (1969)Google Scholar
  7. 7.
    Ehlers, J.; Kundt, W.: Gravitation: an introduction to current research. In: Witten, L. (Ed.), Wiley, New York, pp 49–101 (1962)Google Scholar
  8. 8.
    Goldberg, J.N.; Kerr, R.P.: Asymptotic properties of the electromagnetic field. J. Math. Phys. 5, 172–175 (1964)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hall, G.S.: Sectional curvature and the determination of the metric in space-time. Gen. Relat. Gravit. 16, 79–87 (1984)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hall, G.S.: Conformal symmetries and fixed points in space-time. J. Math. Phys. 31, 1198–1207 (1990)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hall, G.S.: Covariantly constant tensors and holonomy structure in general relativity. J. Math. Phys. 32, 181–187 (1991)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hall, G.S.; Lonie, D.P.: Holonomy groups and spacetimes. Class. Quant. Gravit. 17, 1369–1382 (2000)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hall, G.S.: On the theory of Killing orbits in spacetime. Class. Quant. Gravit. 20, 4067–4084 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hall, G.S.: Symmetries and Curvature Structure in General Relativity. World Scientific, Singapore (2004)CrossRefGoogle Scholar
  15. 15.
    Hall, G.S.; Lonie, D.P.: Projective equivalence of Einstein spaces in general relativity class. Quant. Gravit. 26, 125009 (2009)CrossRefGoogle Scholar
  16. 16.
    Hall, G.S.: The geometry of 4-dimensional Ricci-flat manifolds which admit a metric. J. Geom. Phys. 89, 50–59 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hall, G.S.: Symmetries, Orbits and Isotropy in General Relativity Theory. In: Proceedings of the International Conference on Relativistic Astrophysics (ICRA-2015), Lahore (2015)Google Scholar
  18. 18.
    Hall, G.S.; Kırık, B.: Symmetries in 4-Dimensional Manifolds With Metric of Neutral Signature. University of Aberdeen, Aberdeen (2018)CrossRefGoogle Scholar
  19. 19.
    Hermann, R.: On the accessibility problem in control theory. International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics, Academic Press, New York, pp 325–332 (1963)Google Scholar
  20. 20.
    Kobayashi, S.; Nomizu, K.: Foundations of Differential Geometry, vol. 1. Interscience, New York (1963)zbMATHGoogle Scholar
  21. 21.
    Ruh, B.: Krummungstreue Diffeomorphismen Riemannscher und pseudo-Riemannscher Mannigfaltigkeiten. Math. Z. 189, 371–391 (1985)Google Scholar
  22. 22.
    Kulkarni, R.S.: Curvature and metric. Ann. Math. 91, 311–331 (1970)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Petrov, A.Z.: Einstein Spaces. Pergamon, Berlin (1969)CrossRefGoogle Scholar
  24. 24.
    Pirani, F.A.E.: Invariant formulation of gravitational radiation theory. Phys. Rev. 105, 1089–1099 (1957)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Pirani, F.A.E.: Lectures on General Relativity. Brandeis Summer Institute in Theoretical Physics 1, 249–373 (1964)Google Scholar
  26. 26.
    Sachs, R.K.: The outgoing radiation condition in general relativity. Proc. R. Soc. A A264, 309 (1961)zbMATHGoogle Scholar
  27. 27.
    Schell, J.F.: Classification of four-dimensional Riemannian spaces. J. Math. Phys. 2(1961), 202–206 (2018)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  29. 29.
    Stefan, P.: Accessible sets, orbits, and foliations with singularities. Proc. Lond. Math. Soc. 29, 699–713 (1974)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sussmann, H.J.: Orbits of families of vector fields and integrability of distributions. Trans. Am. Math. Soc. 180, 171–188 (1973)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Trautman, A.: Lectures on General Relativity. Lectures Given at King’s College, London (1958)zbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of AberdeenAberdeenUK

Personalised recommendations