QED plasma in the early universe

  • Samina S. Masood
Open Access


Renormalization scheme of quantum electrodynamics (QED) at high temperatures is used to calculate the effective parameters of relativistic plasma in the early universe. Renormalization constants of QED play the role of effective parameters of the theory and can be used to determine the collective behavior of the medium. We explicitly show that the dielectric constant, magnetic reluctivity, Debye length and the plasma frequency depend on temperature in the early universe. Propagation speed (\(v_{prop}\)), refractive index (\(i_r\)), plasma frequency (\(\omega \)) and Debye shielding length (\(\lambda _D\)) of a QED plasma are computed at extremely high temperatures in the early universe. We also found the favorable conditions for the existence of relativistic plasma from these calculations.

Mathematics Subject Classification




  1. 1.
    Ahmed, K.; Masood, S.S.: Renormalization and radiative corrections at finite temperature reexamined. Phys. Rev. D 35, 1861 (1987)CrossRefGoogle Scholar
  2. 2.
    Ahmed, K.; Masood, S.S.: Finite-temperature and-density renormalization effects in QED. Phys. Rev. D 35, 4020 (1987)CrossRefGoogle Scholar
  3. 3.
    Ahmed, K.; Masood, S.S.: Vacuum polarization at finite temperature and density in QED. Ann. Phys. 164, 460 (1991)CrossRefGoogle Scholar
  4. 4.
    Bordag, M.; Kirsten, K.: The Ground state energy of a spinor field in the background of a finite radius flux tube. Phys. Rev. D 60, 105019 (1999)CrossRefGoogle Scholar
  5. 5.
    Campanelli, L.; Cea, P.; Tedesco, L.: Ellipsoidal universe can solve the cosmic microwave background quadrupole problem. Phys. Rev. Lett. 97, 131302 (2006). [Erratum-ibid. 97 (2006) 209903] arXiv:astro-ph/0606266 CrossRefGoogle Scholar
  6. 6.
    Campanelli, L.; Cea, P.; Tedesco, L.: Cosmic microwave background quadrupole and ellipsoidal universe. Phys. Rev. D 76, 063007 (2007)CrossRefGoogle Scholar
  7. 7.
    Gies, H.: QED effective action at finite temperature. Phys. Rev. D 60, 105002 (1999)CrossRefGoogle Scholar
  8. 8.
    Haseeb, M.; Masood, S.S.: Second order thermal corrections to electron wavefunction. Phys. Lett. B 704, 66 (2011)Google Scholar
  9. 9.
    Kinoshita, T.: Mass singularities of Feynman amplitudes. J. Math. Phys. 3, 650 (1962)CrossRefGoogle Scholar
  10. 10.
    Kobes, R.: A correspondence between imaginary time and real time finite temperature field theory. Phys. Rev. D 42, 562 (1990)CrossRefGoogle Scholar
  11. 11.
    Landsman, P.: Real-and imaginary-time field theory at finite temperature and density. Phys. Rep. 145, 141 (1987)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lee, T.D.; Nauenberg, M.: Degenerate systems and mass singularities. Phys. Rev. 133, 1549 (1964)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Masood, S.S.: Finite-temperature and-density effects on electron self-mass and primordial nucleosynthesis. Phys. Rev. D 36, 2602 (1987)CrossRefGoogle Scholar
  14. 14.
    Masood, S.S.: Photon mass in the classical limit of finite-temperature and-density QED. Phys. Rev. D 44, 3943 (1991)CrossRefGoogle Scholar
  15. 15.
    Masood, S.: Neutrino physics in hot and dense medium. Phys. Rev. D 48(7), 3250 (1993)CrossRefGoogle Scholar
  16. 16.
    Masood, S.S.; Haseeb, M.Q.: Gluon polarization at finite temperature and density. Astropart. Phys. 3, 405 (1995)CrossRefGoogle Scholar
  17. 17.
    Masood, S.: Magnetic moment of neutrinos in the statistical background. Astropart. Phys. 4, 189 (1995)CrossRefGoogle Scholar
  18. 18.
    Masood, S.: Renormalization of QED near decoupling temperature. Phys. Res. Int. 2014, 48913 (2014). arXiv:1407.1414
  19. 19.
    Masood, S.S.: Nucleosynthesis in hot and dense media. JMP 5, 296 (2014). CrossRefGoogle Scholar
  20. 20.
    Masood, S.S.: Propagation of monochromatic light in a hot and dense medium. Euro. Phys. J. C 77, 826 (2017). Samina Masood,‘QED Plasma at Finite Temperature up to Two Loops’, arXiv:1808.10769 [hep-ph]
  21. 21.
    Masood, S.; Saleem, I.: Propagation of electromagnetic waves in extremely dense media. IJMPA 32, 17500816 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nieves, J.F.; Pal, P.B.: P- and CP-odd terms in the photon self-energy within a medium. Phys. Rev. D 39(2), 652 (1989)CrossRefGoogle Scholar
  23. 23.
    Parker, L.: Particle creation in expanding universes. Phys. Rev. Lett. 21, 562 (1968)CrossRefGoogle Scholar
  24. 24.
    Parker, L.: Particle creation and particle number in an expanding universe. J. Phys. A 45, 374023 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Prokopec, T.; Tornkvist, O.: Photon mass from inflation. Phys. Rev. Lett. 89, 101301 (2002)CrossRefGoogle Scholar
  26. 26.
    Samina, S.: Renormalization of QED in superdense media. Phys. Rev. D 47, 648 (1993)Google Scholar
  27. 27.
    Sauli, V.: Hadronic vacuum polarization in \(e^+e^-\rightarrow \mu ^+\mu ^-\) process below 3 GeV. arXiv:1704.01887
  28. 28.
    Schwinger, J.: Lecture Notes of Brandeis University Summer Institute (1960).Google Scholar
  29. 29.
    Schwinger, J.: Brownian motion of a quantum oscillator. J. Math. Phys. 2, 407 (1961)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Silin, V.P.: On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136 (1960)MathSciNetGoogle Scholar
  31. 31.
    Tsytovich, V.N.: Spatial dispersion in a relativistic plasma. Sov. Phys. JETP 13(6), 1249 (1961)zbMATHGoogle Scholar
  32. 32.
    Weldon, H.A.: Covariant calculations at finite temperature: the relativistic plasma. Phys. Rev. D 26, 1394 (1982)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Physical and Applied SciencesUniversity of Houston Clear LakeHoustonUSA

Personalised recommendations