Advertisement

Classification of static cylindrically symmetric spacetimes in f(R) theory of gravity by conformal motions with perfect fluid matter

  • Fiaz Hussain
  • Ghulam Shabbir
  • Muhammad Ramzan
Open Access
Article
  • 97 Downloads

Abstract

Assuming the source of energy momentum tensor as perfect fluid, a classification of static cylindrically symmetric spacetimes in f(R) theory of gravity by conformal vector fields (CVFs) is presented. For the classification purpose, we put different conditions on metric coefficients to obtain solutions in f(R) theory of gravity. By means of some algebraic and direct integration techniques, it is shown that the dimension of CVFs for the considered spacetimes turns out to be 4, 5, or 15.

Mathematical Subject Classification

83C05 83C15 83C20 

Notes

References

  1. 1.
    Azadi, A.; Momeni, D.; Nouri-Zonoz, M.: Cylinderical symmetric solutions in f(R) gravity. Phys. Lett. B 670(3), 210–214 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bokhari, A.H.; Kashif, A.R.; Qadir, A.: A complete classification of curvature collineations of cylindrically symmetric static metrics. Gen. Rel. Grav. 35(6), 1059–1076 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bokhari, A.H.: On a cylindrically symmetric static metric admitting proper matter collineations. II Nuovo. Cimento B 118(7), 725–727 (2003)MathSciNetGoogle Scholar
  4. 4.
    Buchdahl, H.A.: Non-linear lagrangian and cosmological theory. Mon. Not. Roy. Astron. Soc 150(1), 1–8 (1970)CrossRefGoogle Scholar
  5. 5.
    Carroll, S.M.: The cosmological constant. Living. Rev. Relat. 4(1), 1–50 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hall, G.S.: Symmetries and Curvature Structure in General Relativity. World Scientific, Singapore (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Khan, S.; Ahmad, F.; Ali, A.; Hussain, T.: A note on Killing symmetries of Lemaitre-Bondi metric. J. Appl. Environ. Biol. Sci. 4(7S), 403–405 (2014)Google Scholar
  8. 8.
    Khan, S.; Hussain, T.; Bokhari, A.H.; Khan, G.A.: Conformal Killing vectors of plane symmetric four dimensional lorentzian manifolds. Eur. Phys. J. C. 75(11), 523–531 (2015)CrossRefGoogle Scholar
  9. 9.
    Maartens, R.; Mason, D.P.; Tsamparlis, M.: Kinametic and dynamic properties of conformal Killing vectors in anisotropic fluids. J. Math. Phys. 27(12), 2987–2994 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fjallborg, Mikael: Static cylindrically symmetric space-times. Class. Quant. Gravity 24(9), 2253–2270 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Momeni, D.; Gholizade, H.: A note on constant curvature solutions in cylindrically symmetric metric f(R) gravity. Int. J. Mod. Phys. D 18(11), 1719–1731 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Nojiri, S.; Odintsov, S. D.: Problems Of Modern Theoretical Physics. A Volume in Honour of Prof. Buchninder (TSPU publishing, Tomsk) (2008), vol. 266. arXiv:0807.0685.
  13. 13.
    Qadir, A.; Ziad, M.: Classification of static cylindrically symmetric space-times. II Nuovo Cimento 110(3), 277–290 (1995)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Riess, A.G.; et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astrophys. J. 116(3), 1009–1038 (1998)Google Scholar
  15. 15.
    Shabbir, G.; Bokhari, A.H.; Kashif, A.R.: Proper curvature collineations in cyllinderically symmetric space-times. II Nuovo Cimento B 118(9), 873–886 (2003)Google Scholar
  16. 16.
    Shabbir, G.; Khan, A.; Khan, S.: A note on classification of teleparallel conformal vector fields of cylindrically symmetric static space-times in telleparallel theory of gravitation. Int. J. Theor. Phys. 52(4), 1182–1187 (2013)CrossRefzbMATHGoogle Scholar
  17. 17.
    Shabbir, G.; Khan, S.: Classification of cylindrically symmetric static space-times according to their Killing vector fields in teleparallel theory of gravitation. Mod. Phys. Lett. A 25(7), 525–535 (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Shabbir, G.; Khan, S.: Classification of teleparallel homothetic vector fields in cylindrically symmetric static space-times in teleparallel theory of gravitation. Commun. Theor. Phys. 54(4), 675–678 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Shabbir, G.; Ramzan, M.: Classification of cylindrically symmetric static space-times according to their proper homothetic vector fields. Appl. Sci. 9, 148–154 (2007)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Shabbir, G.; Siddiqui, A.A.: Proper affine vector fields in cylindrically symmetric static space-times. II Nuovo Cimento B 120(9), 939–949 (2005)MathSciNetGoogle Scholar
  21. 21.
    Shamir, F.; Raza, Z.: Dust static cylindrically symmetric solutions in f(R) gravity. Commun. Theor. Phys. 62(3), 348–352 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Shamir, F.: Exploring plane symmetric solutions in f(R) gravity. J. Exp. Theor. Phys. 122(2), 331–337 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sharif, M.; Arif, S.: Static cylindrically symmetric interior solutions in f(R) gravity. Mod. Phys. Lett. A 27(25), Article ID. 1250138, 1–12 (2012)Google Scholar
  24. 24.
    Sharif, M.; Arif, S.: Non-vacuum static cylindrically symmetric solutions and energy distribution in f(R) gravity. Astrophys. Space. Sci. 342(1), 237–243 (2012)CrossRefzbMATHGoogle Scholar
  25. 25.
    Sharif, M.: Symmetries of energy momentum tensor of cylindrically symmetric static space-times. J. Math. Phys. 45(4), 1532–1560 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Stephani, H.; Kramer, D.; MacCallum, M.A.H.; Hoenselears, C.; Herlt, E.: Exact Solutions of Einsteins Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  27. 27.
    Tonry, J.L.; et al.: Cosmological results from high supernova. Astrophys. J. 594(1), 1–24 (2003)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsThe Islamia University of BahawalpurBahawalpurPakistan
  2. 2.Faculty of Engineering SciencesGIK Institute of Engineering Sciences and TechnologySwabiPakistan

Personalised recommendations