Arabian Journal of Mathematics

, Volume 8, Issue 1, pp 63–77 | Cite as

q-Difference equations for the 2-iterated q-Appell and mixed type q-Appell polynomials

  • H. M. Srivastava
  • Subuhi Khan
  • Mumtaz RiyasatEmail author
Open Access


In this article, the authors establish the recurrence relations and q-difference equations for the 2-iterated q-Appell polynomials. The recurrence relations and the q-difference equations for the 2-iterated q-Bernoulli polynomials, the q-Euler polynomials and the q-Genocchi polynomials are also derived. An analogous study of certain mixed type q-special polynomials is also presented.

Mathematics Subject Classification

33D45 33D99 33E20 



  1. 1.
    Al-Salam, W.A.: \(q\)-Appell polynomials. Ann. Mat. Pura Appl. 4(77), 31–45 (1967)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Al-Salam, W.A.: \(q\)-Bernoulli numbers and polynomials. Math. Nachr. 17, 239–260 (1959)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Andrews, G.E.; Askey, R.; Roy, R.: Special Functions of Encyclopedia. Mathematics and its Applications. Cambridge University Press, Cambridge (1999)Google Scholar
  4. 4.
    Appell, P.: Sur une classe de polynômes. Ann. Sci. École Norm. Sup. 9(2), 119–144 (1880)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cheikh, Y.B.; Douak, K.: On the classical \(d\)-orthogonal polynomials defined by certain generating functions, I. Bull. Belg. Math. Soc. Simon Stevin 7, 107–124 (2000)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Costabile, F.A.; Longo, E.: A determinantal approach to Appell polynomials. J. Comput. Appl. Math. 234(5), 1528–1542 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Douak, K.: The relation of the \(d\)-orthogonal polynomials to the Appell polynomials. J. Comput. Appl. Math. 70(2), 279–295 (1996)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ernst, T.: \(q\)-Bernoulli and \(q\)-Euler polynomials, an umbral approach. Int. J. Differ. Equ. 1(1), 31–80 (2006). (0973-6069)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Ernst, T.: A Comprehensive Treatment of \(q\)-Calculus, p. xvi + 491. Birkhäuser/Springer Basel AG, Basel (2012)CrossRefGoogle Scholar
  10. 10.
    He, M.X.; Ricci, P.E.: Differential equation of Appell polynomials via the factorization method. J. Comput. Appl. Math. 139, 231–237 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Keleshteri, M.E.; Mahmudov, N.I.: A \(q\)-umbral approach to \(q\)-Appell polynomials. arXiv:1505.05067
  12. 12.
    Keleshteri, M.E.; Mahmudov, N.I.: On the class of \(2 D ~q\)-Appell polynomials. arXiv:1512.03255v1
  13. 13.
    Khan, S.; Al-Saad, M.W.M.; Khan, R.: Laguerre-based Appell polynomials: properties and applications. Math. Comput. Model. 52(1–2), 247–259 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Khan, S.; Raza, N.: 2-Iterated Appell polynomials and related numbers. Appl. Math. Comput. 219(17), 9469–9483 (2013)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Khan, S.; Raza, N.: General-Appell polynomials within the context of monomiality principle. Int. J. Anal. 2013 (2013).
  16. 16.
    Khan, S.; Riyasat, M.: Differential and integral equations for the 2-iterated Appell polynomials. J. Comput. Appl. Math. 306, 116–132 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Khan, S.; Riyasat, M.: Determinant approach to the 2-Iterated \(q\)-Appell and mixed type \(q\)-Appell polynomials. arXiv:1606.04265
  18. 18.
    Khan, S.; Yasmin, G.; Khan, R.; Hassan, N.A.M.: Hermite-based Appell polynomials: properties and applications. J. Math. Anal. Appl. 351(2), 756–764 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mahmudov, N.I.: On a class of \(q\)-Bernoulli and \(q\)-Euler polynomials. Adv. Differ. Equ. 108, 11 (2013)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Mahmudov, N.I.: Difference equations of \(q\)-Appell polynomials. Appl. Math. Comput. 245, 539–543 (2014)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Mahmudov, N.I.; Keleshteri, M.E.: On a class of generalized \(q\)-Bernoulli and \(q\)-Euler polynomials. Adv. Differ. Equ. 115, 1–10 (2013)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Mahmudov, N.I.; Keleshteri, M.E.: \(q\)-Extensions for the Apostol type polynomials. J. Appl. Math. 2014 (2014).
  23. 23.
    Maroni, P.: L’orthogonalité et les récurrences de polynômes d’ordre supérieur á deux. Ann. Fac. Sci. Toulouse 10, 105–139 (1989)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Özarslan, M.A.: Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials. Adv. Differ. Equ. 116, 1–13 (2013)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Özarslan, M.A.; Yilmaz, B.: A set of finite order differential equations for the Appell polynomials. J. Comput. Appl. Math. 259, 108–116 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Roman, S.: The theory of the umbral calculus I. J. Math. Anal. Appl. 87, 58–115 (1982)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Roman, S.: The Umbral Calculus. Academic Press, New York (1984)zbMATHGoogle Scholar
  28. 28.
    Roman, S.: More on the umbral calculus, with emphasis on the \(q\)-umbral calculus. J. Math. Anal. Appl. 107, 222–254 (1985)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Srivastava, H.M.: Some characterizations of Appell and \(q\)-Appell polynomials. Ann. Mat. Pura Appl. 4(130), 321–329 (1982)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Srivastava, H.M.: Some generalizations and basic (or \(q\)-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inform. Sci. 5, 390–444 (2011)MathSciNetGoogle Scholar
  31. 31.
    Srivastava, H.M.; Choi, J.: Zeta and \(q\)-Zeta Functions and Associated Series and Integrals. Elsevier Science Publishers, Amsterdam (2012)zbMATHGoogle Scholar
  32. 32.
    Srivastava, H.M.; Özarslan, M.A.; Yilmaz, B.: Some families of differential equations associated with the Hermite-based Appell polynomials and other classes of Hermite-based polynomials. Filomat 28(4), 695–708 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zaghouani, A.: On some basic \(d\)-orthogonal polynomial sets. Georgian Math. J. 12, 583–593 (2005)MathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • H. M. Srivastava
    • 1
    • 2
  • Subuhi Khan
    • 3
  • Mumtaz Riyasat
    • 3
    Email author
  1. 1.Department of Mathematics and StatisticsUniversity of VictoriaVictoriaCanada
  2. 2.China Medical UniversityTaichungTaiwan, ROC
  3. 3.Department of MathematicsAligarh Muslim UniversityAligarhIndia

Personalised recommendations