Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quasi generalized CR-lightlike submanifolds of indefinite nearly Sasakian manifolds

Abstract

In this paper, we introduce and study a new class of CR-lightlike submanifold of an indefinite nearly Sasakian manifold, called quasi generalized Cauchy–Riemann (QGCR) lightlike submanifold. We give some characterization theorems for the existence of QGCR-lightlike submanifolds and finally derive necessary and sufficient conditions for some distributions to be integrable.

References

  1. 1.

    Ahmad, M.; Danish Siddiqui, M.: On a nearly Sasakian manifold with a semi-symmetric semi-metric connection. Int. J. Math. Anal. 4(33–36), 1725–1732 (2002)

  2. 2.

    Blair D.E., Showers D.K., Yano K.: Nearly Sasakian structures. Kodai Math. Sem. Rep. 27, 175–180 (1976)

  3. 3.

    Blair, D.E.: Riemannian geometry of contact and symplectic manifolds. In: Progress in Mathematics, vol. 203. Birkhauser Boston, Inc., Boston (2002)

  4. 4.

    Bonome A., Castro R., García-Rio E., Hervella L.: Curvature of indefinite almost contact manifolds. J. Geom. 58, 66–86 (1997)

  5. 5.

    Calin, C.: Contributions to geometry of CR-submanifold. Ph.D. thesis, University of Iasi, Romania (1998)

  6. 6.

    Cappelletti-Montano, B.; Dileo, G.: Nearly Sasakian geometry and SU(2)-structures. Math. DG. J. 20, 1–23 (2015)

  7. 7.

    Duggal, K.L.; Bejancu, A.: Lightlike submanifolds of semi-Riemannian manifolds and applications. In: Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht (1996)

  8. 8.

    Duggal, K.L.; Jin, D.H.: Null Curves and Hypersurfaces of Semi-Riemannian Manifolds. World Scientific Publishing Co. Pte. Ltd, Singapore (2007)

  9. 9.

    Duggal, K.L.; Sahin, B.: Differential geometry of lightlike submanifolds. In: Frontiers in Mathematics. Birkhäuser, Basel (2010)

  10. 10.

    Duggal K.L., Sahin B.: Generalised Cauchy–Riemannian lightlike submanifolds of indefinite Sasakian manifolds. Acta Math. Hung. 122(1–2), 16 (2008)

  11. 11.

    Duggal K.L., Jin D.H.: Generic lightlike submanifolds of indefinite Sasakian manifolds. Int. Electron. J. Geom. 5(1), 108–119 (2012)

  12. 12.

    Jin D.H.: Indefinite trans-Sasakian manifold admitting an ascreen half lightlike submanifold. Commun. Korean Math. Soc. 29(3), 451–461 (2014)

  13. 13.

    Massamba F.: Totally contact umbilical lightlike hypersurfaces of indefinite Sasakian manifolds. Kodai Math. J. 31, 338–358 (2008)

  14. 14.

    Massamba F.: On semi-parallel lightlike hypersurfaces of indefinite Kenmotsu manifolds. J. Geom. 95, 73–89 (2009)

  15. 15.

    Massamba F.: On lightlike geometry in indefinite Kenmotsu manifolds. Math. Slovaca 62(2), 315–344 (2012)

  16. 16.

    Massamba F.: Symmetries of null geometry in indefinite Kenmotsu manifolds. Mediterr. J.Math. 10(2), 1079–1099 (2013)

  17. 17.

    Tarafdar,M.; Mayra, A.: On nearly Sasakian manifold. An. Stiint. Univ. Al. I. Cuza Iasi.Mat. (N.S.) 45(2), 291–294 (1999)

  18. 18.

    Yano, K.; Kon, M.: Structures on manifolds. In: Series in Pure Mathematics, vol. 3. World Scientific, Singapore (1984)

Download references

Author information

Correspondence to Fortuné Massamba.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Massamba, F., Ssekajja, S. Quasi generalized CR-lightlike submanifolds of indefinite nearly Sasakian manifolds. Arab. J. Math. 5, 87–101 (2016). https://doi.org/10.1007/s40065-016-0146-0

Download citation

Mathematics Subject Classification

  • 53C25
  • 53C40
  • 53C50