Advertisement

Arabian Journal of Mathematics

, Volume 4, Issue 2, pp 127–139 | Cite as

Inferences using type-II progressively censored data with binomial removals

  • Ahmed A. Soliman
  • Ahmed H. Abd Ellah
  • Nasser A. Abou-Elheggag
  • Rashad M. El-SagheerEmail author
Open Access
Article

Abstract

This paper considers the estimation problem for Burr type-X model, when the lifetimes are collected under type-II progressive censoring with random removals, where the number of units removed at each failure time follows a binomial distribution. The methods of maximum likelihood as well as the Bayes procedure to derive both point and interval estimates of the parameters are used. The expected test time to complete the censoring test is computed and analyzed for different censoring schemes. The effect of the binomial distribution parameter p on the expected test time under progressive censoring and the relative expected test time over the complete sample are investigated. Monte Carlo simulations are performed to compare and evaluate the performance of different methods. Furthermore, an example with a real data set is presented for illustrative purposes.

Mathematics Subject Classification

62N05 62F10 

References

  1. 1.
    Balakrishnan, N.; Aggarwala, R.: Progressive Censoring: Theory, Methods, and Applications. Birkhauser, Boston (2000)Google Scholar
  2. 2.
    Balakrishnan, N.: Progressive censoring methodology: anappraisal. Test 16, 211–296 (with discussions) (2007)Google Scholar
  3. 3.
    Balasooriya U., Saw S.L.C., Gadag V.: Progressively censored reliability sampling plans for theWeibull distribution. Tech nometrics 42, 160–167 (2000)Google Scholar
  4. 4.
    Ng H.K., Chan P.S., Balakrishnan N.: Optimal progressive censoring plans for the Weibull distribution. Technometrics 46, 470–481 (2004)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Balakrishnan, N.; Knnan, N.; Lin, C.T.; Ng, H.: Point and interval estimation forGaussian distribution based on progressively type II censored samples. IEEE Trans. Reliab. 52, 90–95 (2003)Google Scholar
  6. 6.
    Fernandez, A.J.: On estimating exponential parameters with general type II progressive censoring. J. Stat. Plan. Inference 121, 135–147 (2004)Google Scholar
  7. 7.
    Soliman A.A.: Estimation of parameters of life from progressively censored data using Burr-XII model. IEEE Trans. Reliab. 54, 34–42 (2005)CrossRefGoogle Scholar
  8. 8.
    Asgharzadeh, A.: Point and interval estimation for a generalized logistic distribution under progressive type II censoring. Commun. Stat. Theory Methods 35, 1685–1702 (2006)Google Scholar
  9. 9.
    Ku C., Kaya M.F.: Estimation for the parameters of the Pareto dsitribution under progressive censoring. Commun. Stat. Theory Methods 36, 1359–1365 (2007)CrossRefGoogle Scholar
  10. 10.
    Wu, S.-J.; Chen, Y.-J.; Chang, C.-T.: Statistical inference based on progressively censored samples with random removals from the Burr type XII distribution. J. Stat. Comput. Simul. 77, 19–27 (2007)Google Scholar
  11. 11.
    Banerjee A., Kundu D.: Inference based on type-II hybrid censored data from a Weibull distribution. IEEE Trans. Reliab. 57, 369–378 (2008)CrossRefGoogle Scholar
  12. 12.
    Raqaba, M.Z.; Asgharzadeh, A.R.; Valiollahi, R.: Prediction for Pareto distribution based on progressively type-II censored samples. Comput. Stat. Data Anal. 54, 1732–1743 (2010)Google Scholar
  13. 13.
    Amin, Z.H.: Bayesian inference for the Pareto lifetime model under progressive censoring with binomial removals. J. Appl. Stat. 35(11), 1203–1217 (2008)Google Scholar
  14. 14.
    Sarhan, A.M.; Abuammoh, A.: Statistical inference using progressively type-II censored data with random scheme. Int. Math. Forum 35, 1713–1725 (2008)Google Scholar
  15. 15.
    Wu, S.-J.: Estimation for the two-parameter pareto distribution under progressive censoring with uniform removals. J. Stat. Comput. Simul. 73(2), 125–134 (2003)Google Scholar
  16. 16.
    Tse, S.K.; Yang, C.; Yuen, H.K.: Statistical analysis of Weibull distributed lifetime data under type II progressive censoring with binomial removals. J. Appl. Stat. 27, 1033–1043 (2000)Google Scholar
  17. 17.
    Cohen A.C.: Progressively censored samples in life testing. Technometrics 5, 327–329 (1963)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Efron, B.: The bootstrap and other resampling plans. In: CBMS-NSF Regional Conference Seriesin Applied Mathematics, vol. 38. SIAM, Philadelphia (1982)Google Scholar
  19. 19.
    Balakrishnan, N.; Sandu, R.A.: A simple simulational algorithm for generating progressively type-II censored samples. Am. Stat. 49, 229–230 (1995)Google Scholar
  20. 20.
    Lawless, J.F.: Statistical Models and Methods for Lifetime Data. Wiley, New York (1982)Google Scholar
  21. 21.
    Nelson, W.B.: Applied Life Data Analysis. Wiley, New York (1982)Google Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • Ahmed A. Soliman
    • 1
  • Ahmed H. Abd Ellah
    • 2
  • Nasser A. Abou-Elheggag
    • 2
  • Rashad M. El-Sagheer
    • 3
    Email author
  1. 1.Faculty of ScienceIslamic UniversityMadinahSaudi Arabia
  2. 2.Mathematics DepartmentSohag UniversitySohagEgypt
  3. 3.Mathematics Department, Faculty of ScienceAl-Azhar UniversityNasr-CityEgypt

Personalised recommendations