Advertisement

Arabian Journal of Mathematics

, Volume 4, Issue 1, pp 29–34 | Cite as

Studying monoids is not enough to study multiplicative properties of rings: an elementary approach

  • Marco FontanaEmail author
  • Muhammad Zafrullah
Open Access
Article

Abstract

The aim of these notes is to indicate, using very simple examples, that not all results in ring theory can be derived from monoids and that there are results that deeply depend on the interplay between “ + ” and “·”.

Mathematics Subject Classification

20M14 20M12 20M25 13A15 13G05 

References

  1. 1.
    Anderson D.D., Zafrullah M.: Almost Bezout domains. J. Algebra 142, 285–309 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ánh P.N., Márki L., Vámos P.: Divisibility theory in commutative rings: Bézout monoids. Trans. Am. Math. Soc. 364, 3967–3992 (2012)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chang G.W.: Almost splitting sets in integral domains. J. Pure Appl. Algebra 197, 279–292 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Cohn P.: Bézout rings and their subrings. Proc. Camb. Philos. Soc. 64, 251–264 (1968)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dumitrescu T., Lequain Y., Mott J., Zafrullah M.: Almost GCD domains of finite t-character. J. Algebra 245, 161–181 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Fuchs L.: Riesz groups. Ann. Sc. Norm. Sup. Pisa, Cl. Scienze, Ser. 3, 19, 1–34 (1965)Google Scholar
  7. 7.
    Fossum, R.: The Divisor Class Group of a Krull Domain. Ergebnisse der Mathematik und ihrer Grenzgebiete Band, vol. 74. Springer, Berlin (1973)Google Scholar
  8. 8.
    Fuchs, L.; Salce, L.: Modules Over Non-Noetherian Domains. Mathematical Surveys and Monographs, vol. 84. American Mathematical Society, Providence (2001)Google Scholar
  9. 9.
    Gilmer R.: Multiplicative Ideal Theory. M. Dekker, New York (1972)zbMATHGoogle Scholar
  10. 10.
    Halter-Koch F.: Ideal Systems: An Introduction to Multiplicative Ideal Theory. M. Dekker, New York (1998)zbMATHGoogle Scholar
  11. 11.
    Storch U.: Fastfaktorielle Ringe, vol. 36. Schriftenreihe Math. Inst. Univ., Münster (1967)Google Scholar
  12. 12.
    Zafrullah M.: A general theory of almost factoriality. Manuscr. Math. 51, 29–62 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Zafrullah M.: On a property of pre-Schreier domains. Commun. Algebra 15, 1895–1920 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Zafrullah, M.: What v-coprimality can do for you. In: Brewer, J.W., Glaz, S., Heinzer, W., Olberding, B. (eds.) Multiplicative Ideal Theory in Commutative Algebra, pp. 387–404. Springer, New York (2006)Google Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  1. 1.Dipartimento di Matematica e FisicaUniversità degli Studi “Roma Tre”RomeItaly
  2. 2.Department of MathematicsIdaho State UniversityPocatelloUSA

Personalised recommendations