Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the capacity and depth of compact surfaces

  • 1 Accesses


K. Borsuk in 1979, at the Topological Conference in Moscow, introduced the concept of capacity and depth of a compactum. In this paper we compute the capacity and depth of compact surfaces. We show that the capacity and depth of every compact orientable surface of genus \(g\ge 0\) is equal to \(g+2\). Also, we prove that the capacity and depth of a compact non-orientable surface of genus \(g>0\) is \([\frac{g}{2}]+2\).

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Borsuk, K.: Some problems in the theory of shape of compacta. Russian Math. Surv. 34(6), 24–26 (1979)

  2. 2.

    Borsuk, K.: Theory of Retracts, Monografie Matematyczne, vol. 44. PWN, Warsaw (1967)

  3. 3.

    Borsuk, K.: Theory of Shape, Monograf. Mat. PWN, Warszawa (1975)

  4. 4.

    Eberhart, C., Gordh, G.R., Mack, J.: The shape classification of Torus-like and (n-sphere)-like continua. Gen. Top. Appl. 4, 85–94 (1974)

  5. 5.

    Handel, D., Segal, J.: Shape classification of (projective m-space)-like continua. Gen. Top. Appl. 3, 111–119 (1973)

  6. 6.

    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

  7. 7.

    Keesling, J.: On the shape of torus-like continua and compact connected topological groups. Proc. Amer. Math. Soc. 40, 297–302 (1973)

  8. 8.

    Kodama, Y., Ono, J., Watanabe, T.: AR associated with ANR-sequence and shape. Gen. Top. Appl. 9, 71–88 (1978)

  9. 9.

    Kolodziejczyk, D.: Homotopy dominations within polyhedra. Fund. Math. 178, 189–202 (2003)

  10. 10.

    Kolodziejczyk, D.: Polyhedra dominating finitely many different homotopy types. Topol. Appl. 146–147, 583–592 (2005)

  11. 11.

    Kolodziejczyk, D.: Polyhedra with finite fundamental group dominate only finitely many different homotopy types. Fund. Math. 180, 1–9 (2003)

  12. 12.

    Kolodziejczyk, D.: Polyhedra with virtually polycyclic fundamental group have finite depth. Fund. Math. 197, 229–238 (2007)

  13. 13.

    Kolodziejczyk, D.: Simply-connected polyhedra dominate only finitely many different shapes. Topol. Appl. 112, 289–295 (2001)

  14. 14.

    Kolodziejczyk, D.: There exists a polyhedron dominating infinitely many different homotopy types. Fund. Math. 151, 39–46 (1996)

  15. 15.

    Mardesic, S., Segal, J.: Shape Theory. The Inverse System Approach, North-Holland Mathematical Library, vol. 26, North-Holland, Amsterdam (1982)

  16. 16.

    Massey, W.S.: A Basic Course in Algebraic Topology. Springer-Verlag, New York (1991)

  17. 17.

    Mather, M.: Counting homotopy types of manifolds. Topology 4, 93–94 (1965)

  18. 18.

    Munkres, J.R.: Topology. Prentice Hall, Upper Saddle River (2000)

  19. 19.

    Usenko, V.M.: Subgroups of semidirect products. Ukrain. Mat. Zh. 43(7–8), 982–988 (1991)

  20. 20.

    Wu, J., Zhang, Q.: The group fixed by a family of endomorphisms of a surface group. J. Algebra 417, 412–432 (2014)

Download references

Author information

Correspondence to Behrooz Mashayekhy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Jim Stasheff.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abbasi, M., Mashayekhy, B. On the capacity and depth of compact surfaces. J. Homotopy Relat. Struct. (2020). https://doi.org/10.1007/s40062-020-00254-4

Download citation


  • Capacity
  • Compact surface
  • Homotopy domination
  • Homotopy type
  • Eilenberg–MacLane space
  • Polyhedron

Mathematics Subject Classification

  • 55P55
  • 55P15
  • 55P20