Advertisement

A simplicial foundation for differential and sector forms in tangent categories

  • G. S. H. Cruttwell
  • Rory B. B. Lucyshyn-Wright
Article
  • 37 Downloads

Abstract

Tangent categories provide an axiomatic framework for understanding various tangent bundles and differential operations that occur in differential geometry, algebraic geometry, abstract homotopy theory, and computer science. Previous work has shown that one can formulate and prove a wide variety of definitions and results from differential geometry in an arbitrary tangent category, including generalizations of vector fields and their Lie bracket, vector bundles, and connections. In this paper we investigate differential and sector forms in tangent categories. We show that sector forms in any tangent category have a rich structure: they form a symmetric cosimplicial object. This appears to be a new result in differential geometry, even for smooth manifolds. In the category of smooth manifolds, the resulting complex of sector forms has a subcomplex isomorphic to the de Rham complex of differential forms, which may be identified with alternating sector forms. Further, the symmetric cosimplicial structure on sector forms arises naturally through a new equational presentation of symmetric cosimplicial objects, which we develop herein.

Keywords

Differential categories Tangent categories Differential forms de Rham cohomology Simplicial objects Sector forms 

Mathematics Subject Classification

18D99 58A10 58A12 58A32 51K10 55U10 55U15 18G30 

References

  1. 1.
    Barr, M.: Oriented singular homology. Theory Appl. Categ. 1(1), 1–9 (1995)MathSciNetMATHGoogle Scholar
  2. 2.
    Bauer, K., Johson, B., Osborne, C., Riehl, E., Tebbe, Amelia: Directional derivatives and higher order chain rules for abelian functor calculus. Topol. Appl. 235, 375–427 (2018)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Cartesian differential categories. Theory Appl. Categ. 22, 622–672 (2009)MathSciNetMATHGoogle Scholar
  4. 4.
    Burroni, A.: Higher-dimensional word problems with applications to equational logic. Theoret. Comput. Sci. 115(1), 43–62 (1993)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cockett, J.R.B., Cruttwell, G.S.H.: Differential structure, tangent structure, and SDG. Appl. Categ. Struct. 22(2), 331–417 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cockett, J.R.B., Cruttwell, G.S.H.: The Jacobi identity for tangent categories. Cah. Topol. Géom. Différ. Catég. LVI(4), 301–316 (2015)MathSciNetMATHGoogle Scholar
  7. 7.
    Cockett, J.R.B., Cruttwell, G.S.H.: Differential bundles and fibrations for tangent categories. Cah. Topol. Géom. Différ. Catég., LIX(1) (2018). https://arxiv.org/abs/1606.08379
  8. 8.
    Cockett, R., Gallagher, J.: Categorical models of the differential \(\lambda \)-calculus revisited. Electron. Notes Comput. Sci. 325, 63–83 (2016)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cruttwell, G.S.H.: Forms and exterior differentiation in Cartesian differential categories. Theory Appl. Categ. 28, 981–1001 (2013)MathSciNetMATHGoogle Scholar
  10. 10.
    Garner, R.: An embedding theorem for tangent categories. Adv. Math. 323, 668–687 (2018)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Grandis, M.: Finite sets and symmetric simplicial sets. Theory Appl. Categ. 8, 244–252 (2001)MathSciNetMATHGoogle Scholar
  12. 12.
    Jacobs, B.: Categorical Logic and Type Theory, volume 141 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam (1999)Google Scholar
  13. 13.
    Johnson, B., McCarthy, R.: Deriving calculus with cotriples. Trans. Am. Math. Soc. 356(2), 757–803 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Johnstone, P.T.: Topos theory. Academic Press [Harcourt Brace Jovanovich, Publishers], Vol. 10. London Mathematical Society Monographs, London (1977)Google Scholar
  15. 15.
    Kock, A., Reyes, G.E., Veit, B.: Forms and Integration in Synthetic Differential Geometry. Aarhus Preprint Series, (31) (1979/1980)Google Scholar
  16. 16.
    Kock, A.: A simple axiomatics for differentiation. Math. Scand. 40(2), 183–193 (1977)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kock, A.: Differential Forms in Synthetic Differential Geometry. Aarhus Preprint Series (28) (1978/79)Google Scholar
  18. 18.
    Kock, A.: Differential forms as infinitesimal cochains. J. Pure Appl. Algebra 154(1–3), 257–264 (2000). Category theory and its applications (Montreal, QC, 1997)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kock, A.: Synthetic differential geometry, volume 333 of London Mathematical Society Lecture Note Series, second edition. Cambridge University Press, Cambridge (2006). http://home.imf.au.dk/kock/sdg99.pdf
  20. 20.
    Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer, Berlin (1993)CrossRefMATHGoogle Scholar
  21. 21.
    Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis, volume 53 of Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence, RI (1997)CrossRefMATHGoogle Scholar
  22. 22.
    Lafont, Y. Equational reasoning with 2-dimensional diagrams. In: Term rewriting (Font Romeux, 1993), volume 909 of Lecture Notes in Comput. Sci., pp. 170–195. Springer, Berlin (1995)Google Scholar
  23. 23.
    Lafont, Y.: Towards an algebraic theory of Boolean circuits. J. Pure Appl. Algebra 184(2–3), 257–310 (2003)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. Cambridge University Press, second edition (1986)MATHGoogle Scholar
  25. 25.
    Lavendhomme, R.: Basic Concepts of Synthetic Differential Geometry. Springer Science, New York (1996)CrossRefMATHGoogle Scholar
  26. 26.
    Lavendhomme, R., Nishimura, H.: Differential forms in synthetic differential geometry. Int. J. Theoret. Phys. 37(11), 2823–2832 (1998)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Leung, P.: Classifying tangent structures using Weil algebras. Theory Appl. Categ. 32(9), 286–337 (2017)MathSciNetMATHGoogle Scholar
  28. 28.
    Mac Lane, S.: Categorical algebra. Bull. Am. Math. Soc. 71, 40–106 (1965)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Mac Lane, S.: Categories for the Working Mathematician. Springer, New York (1971). Graduate Texts in Mathematics, Vol. 5CrossRefMATHGoogle Scholar
  30. 30.
    Manzonetto, G.: What is a categorical model of the differential and the resource \(\lambda \)-calculi? Math. Struct. Comput. Sci. 22(3), 451–520 (2012)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Moerdijk, I., Reyes, G.E.: Cohomology theories in synthetic differential geometry. Rev. Colombiana Mat. 20(3–4), 223–276 (1986). Seminar and workshop on category theory and applications (Bogotá, 1983)MathSciNetMATHGoogle Scholar
  32. 32.
    Moerdijk, I., Reyes, G.E.: Models for Smooth Infinitesimal Analysis. Springer, New York (1991)CrossRefMATHGoogle Scholar
  33. 33.
    Rahula, M., Vašík, P., Voicu, N.: Tangent structures: sector-forms, jets and connections. J. Phys. Conf. Ser. 346, 1–9 (2012)CrossRefGoogle Scholar
  34. 34.
    Rosický, J.: Abstract tangent functors. Diagrammes 12, JR1–JR11 (1984)MathSciNetMATHGoogle Scholar
  35. 35.
    Spivak, M.: A comprehensive introduction to differential geometry, vol. 1. Publish or Perish Inc. (1999)Google Scholar
  36. 36.
    The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu (2018)
  37. 37.
    Weibel, C.: An Introduction to Homological Algebra. Cambridge University Press, Cambridge (1994)CrossRefMATHGoogle Scholar
  38. 38.
    White, J.E.: The method of iterated tangents with applications in local Riemannian geometry. Number 13 in Monographs and Studies in Mathematics. Pitman (1982)Google Scholar

Copyright information

© Tbilisi Centre for Mathematical Sciences 2018

Authors and Affiliations

  • G. S. H. Cruttwell
    • 1
  • Rory B. B. Lucyshyn-Wright
    • 1
  1. 1.Department of Mathematics and Computer ScienceMount Allison UniversitySackvilleCanada

Personalised recommendations