Koszul–Tate resolutions as cofibrant replacements of algebras over differential operators

  • Gennaro di Brino
  • Damjan Pištalo
  • Norbert Poncin
Article
  • 5 Downloads

Abstract

Homotopical geometry over differential operators is a convenient setting for a coordinate-free investigation of nonlinear partial differential equations modulo symmetries. One of the first issues one meets in the functor of points approach to homotopical \({{{\mathcal {D}}}}\)-geometry, is the question of a model structure on the category \({\mathtt{DGAlg({{{\mathcal {D}}}})}}\) of differential non-negatively graded \({{{\mathcal {O}}}}\)-quasi-coherent sheaves of commutative algebras over the sheaf \({{{\mathcal {D}}}}\) of differential operators of an appropriate underlying variety \((X,{{{\mathcal {O}}}})\). We define a cofibrantly generated model structure on \({\mathtt{DGAlg({{{\mathcal {D}}}})}}\) via the definition of its weak equivalences and its fibrations, characterize the class of cofibrations, and build an explicit functorial ‘cofibration–trivial fibration’ factorization. We then use the latter to get a functorial model categorical Koszul–Tate resolution for \({{{\mathcal {D}}}}\)-algebraic ‘on-shell function’ algebras (which contains the classical Koszul–Tate resolution). The paper is also the starting point for a homotopical \({{{\mathcal {D}}}}\)-geometric Batalin–Vilkovisky formalism.

Keywords

Differential operator \({{{\mathcal {D}}}}\)-module Model category Relative Sullivan \({{{\mathcal {D}}}}\)-algebra Homotopical geometry \({{{\mathcal {D}}}}\)-geometry Functor of points Koszul–Tate resolution Batalin–Vilkovisky formalism 

Mathematics Subject Classification

18G55 16E45 35A27 32C38 16S32 18G10 

Notes

Acknowledgements

The current paper combines [5] and [6]. The authors are grateful to the referee for valuable comments and constructive suggestions. Further, they are indebted to Jim Stasheff for his careful reading of the first version of this text and his worthwhile remarks. The recommendations of both of these people allowed for significant improvements of the original text(s).

References

  1. 1.
    Barnich, G.: Global and gauge symmetries in classical field theories, Series of lectures, Seminar ‘Algebraic Topology, Geometry and Physics’, University of Luxembourg. homepages.ulb.ac.be/\(\sim \)gbarnichGoogle Scholar
  2. 2.
    Beilinson, A., Drinfeld, V.: Chiral algebras, American Mathematical Society Colloquium Publications, 51. Amer. Math. Soc, Providence, RI (2004)Google Scholar
  3. 3.
    Borceux, F.: Handbook of Categorical Algebra 1. Volume 50 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1994)Google Scholar
  4. 4.
    Borceux, F.: Handbook of Categorical Algebra 2. Volume 51 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1994)Google Scholar
  5. 5.
    di Brino, G., Pištalo, D., Poncin, N.: Model Structure on Differential Graded Commutative Algebras Over the Ring of Differential Operators. arXiv:1505.07720
  6. 6.
    di Brino, G., Pištalo, D., Poncin, N.: Model Categorical Koszul–Tate Resolution for Algebras Over Differential Operators. arXiv:1505.07964
  7. 7.
    di Brino, G., Pištalo, D., Poncin, N.: Homotopical Algebraic Context Over Differential Operators. arXiv:1706.05922
  8. 8.
    Costello, K.: Renormalization and Effective Field Theory. Mathematical Surveys and Monographs Volume, 170. American Mathematical Society, Providence (2011)Google Scholar
  9. 9.
    Dwyer, W.G., Spalinski, J.: Homotopy Theories and Model Categories. Springer, Berlin (1996)MATHGoogle Scholar
  10. 10.
    Félix, Y., Halperin, S., Thomas, J.-C.: Rational Homotopy Theory. Graduate Texts in Mathematics, vol. 205. Springer, Berlin (2001)CrossRefGoogle Scholar
  11. 11.
    Gillespie, J.: The flat model structure on complexes of sheaves. Trans. Am. Math. Soc. 358(7), 2855–2874 (2006)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Goerss, P., Schemmerhorn, K.: Model categories and simplicial methods. In: Interactions Between Homotopy Theory and Algebra. American Mathematical Society, Providence, Contemp. Math., vol. 436, pp. 3–49 (2007)Google Scholar
  13. 13.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics 52. Springer, Berlin (1997)Google Scholar
  14. 14.
    Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)MATHGoogle Scholar
  15. 15.
    Hess, K.: A history of rational homotopy theory. In: History of Topology, North-Holland, Amsterdam, pp. 757–796 (1999)Google Scholar
  16. 16.
    Hirschhorn, P.: Model Categories and Their Localizations Mathematical Surveys and Monographs 99. American Mathematical Society, Providence (2000)Google Scholar
  17. 17.
    Hirschhorn, P.: Overcategories and Undercategories of Model Categories. http://www-math.mit.edu/~psh/undercat.pdf (2005)
  18. 18.
    Hotta, R., Takeuchi, K., Tanisaki, T.: \(\cal{D}\)-Modules, Perverse Sheaves, and Representation Theory. Progress in Mathematics, 236. Birkhäuser, Basel (2008)CrossRefMATHGoogle Scholar
  19. 19.
    Hovey, M.: Model Categories. American Mathematical Society, Providence (2007)CrossRefMATHGoogle Scholar
  20. 20.
    Kashiwara, M., Schapira, P.: Sheaves on Manifolds. Springer, Berlin (1990)CrossRefMATHGoogle Scholar
  21. 21.
    Kauffman, L.H., Radford, D.E., Oliveira Souza, F.J.: Hopf algebras and generalizations. Contemp. Math., 441 (2007)Google Scholar
  22. 22.
    Mac Lane, S.: Categories for the Working Mathematician, Volume 5 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (1998)MATHGoogle Scholar
  23. 23.
    Pištalo, D., Poncin, N.: On Koszul–Tate Resolutions and Sullivan Models. arXiv:1708.05936 (to appear in Dissertationes Math)
  24. 24.
    Pištalo, D., Poncin, N.: Homotopical Algebraic Geometry over Differential Operators and Applications (2018) (to appear in ArXiv)Google Scholar
  25. 25.
    Quillen, D.: Homotopical Algebra. Lecture Notes in Mathematics, 43. Springer, Berlin (1967)CrossRefGoogle Scholar
  26. 26.
    Schapira, P.: D-Modules, Lecture Notes. http://www.math.jussieu.fr/~schapira/lectnotes/Dmod.pdf (2013)
  27. 27.
    Schneiders, J.-P.: An introduction to \({\cal{D}}\)-modules Algebraic analysis meeting (Liège, 1993). Bull. Soc. R. Sci. Liège 63(3–4), 223–295 (1994)MathSciNetMATHGoogle Scholar
  28. 28.
    Tate, J.: Homology of Noetherian rings and local rings. Ill. J. Math. 1(1), 14–27 (1957)MathSciNetMATHGoogle Scholar
  29. 29.
    Toën, B., Vezzosi, G.: Homotopical Algebraic Geometry II: Geometric Stacks and Applications. Mem. Am. Math. Soc., 193(902), (2008)Google Scholar
  30. 30.
    Verbovetsky, A.: Remarks on two approaches to the horizontal cohomology: compatibility complex and the Koszul–Tate resolution. Acta Appl. Math. 72(1), 123–131 (2002)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Weibel, C.A.: An Introduction to Homological Algebra Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1993)Google Scholar

Copyright information

© Tbilisi Centre for Mathematical Sciences 2018

Authors and Affiliations

  • Gennaro di Brino
    • 1
  • Damjan Pištalo
    • 1
  • Norbert Poncin
    • 1
  1. 1.Mathematics Research UnitUniversity of LuxembourgEsch-sur-AlzetteLuxembourg

Personalised recommendations