A bigroupoid’s topology (or, Topologising the homotopy bigroupoid of a space)
Abstract
The fundamental bigroupoid of a topological space is one way of capturing its homotopy 2-type. When the space is semilocally 2-connected, one can lift the construction to a bigroupoid internal to the category of topological spaces, as Brown and Danesh-Naruie lifted the fundamental groupoid to a topological groupoid. For locally relatively contractible spaces the resulting topological bigroupoid is locally trivial in a way analogous to the case of the topologised fundamental groupoid. This is the published version of arXiv:1302.7019.
Keywords
Fundamental bigroupoid Homotopy 2-type Topological bigroupoidMathematics Subject Classification
18D05 22A22 55Q05Notes
Acknowledgments
Thanks are due to several anonymous referees who helped beat this article into shape over several iterations, and to Tim Porter for both inviting its submission to this volume and his subsequent patience. Thanks also to Ronnie Brown, whose lovely book on groupoids [4] and topology was influential in my thesis work (of which this paper formed a small part) in ways that are not apparent to the casual observer: Happy Birthday Ronnie!
References
- 1.Bakovic, I.: Bigroupoid 2-torsors. Ph.D. thesis, Ludwig-Maxmillians-Universität München (2007). Available from http://www.irb.hr/korisnici/ibakovic/
- 2.Bénabou, J.: Introduction to bicategories. In: Proceedings of the midwest category seminar, Springer Lecture Notes, vol. 47. Springer-Verlag (1967)Google Scholar
- 3.Brazas, J.: Semicoverings: a generalization of covering space theory. Homol. Homot. Appl. 14(1), 33–63 (2012). arXiv:1108.3021
- 4.Brown, R.: Topology and groupoids. http://groupoids.org.uk/topgpds.html (2006)
- 5.Brown, R., Danesh-Naruie, G.: The fundamental groupoid as a topological groupoid. Proc. Edinburgh Math. Soc. 2(19):237–244 (1974/75)Google Scholar
- 6.Ehresmann, C.: Catégories topologiques et catégories différentiables. In: Colloque Géom. Diff. Globale (Bruxelles, 1958), pp. 137–150. Centre Belge Rech. Math., Louvain (1959)Google Scholar
- 7.Grothendieck, A.: Letters to L. Breen (1975). Dated 17/2/1975, 1975, 17-19/7/1975. Available from http://www.grothendieckcircle.org/
- 8.Hardie, K.A., Kamps, K., Kieboom, R.: A homotopy 2-groupoid of a Hausdorff space. Appl. Categ. Struct. 8, 209–234 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Hardie, K.A., Kamps, K.H., Kieboom, R.W.: A homotopy bigroupoid of a topological space. Appl. Categ. Struct. 9, 311–327 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Heredia, B.A.: Higher categorical structures in Algebraic Topology: Classifying spaces and homotopy coherence. Ph.D. thesis, Universidad de Granada (2015). http://hdl.handle.net/10481/40300
- 11.Leinster, T.: Basic bicategories (1998). arXiv:math.CT/9810017
- 12.Leinster, T.: Higher operads, higher categories, London Math. Soc. Lecture Note Series, vol. 298. Cambridge University Press (2004). arXiv:math.CT/0305049
- 13.Roberts, D.M.: Fundamental bigroupoids and 2-covering spaces. Ph.D. thesis, University of Adelaide (2009). Available from http://hdl.handle.net/2440/62680
- 14.Roberts, D.M.: A topological fibrewise fundamental groupoid. Homol. Homot. Appl. 17(2), 37–51 (2015). arXiv:1411.5779 MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Roberts, D.M., Schreiber, U.: The inner automorphism 3-group of a strict 2-group. J. Homotopy Rel. Struct. 3(1), 193–245 (2008). arXiv:0708.1741 MathSciNetzbMATHGoogle Scholar
- 16.Stevenson, D.: The geometry of bundle gerbes. Ph.D. thesis, Adelaide University, Department of Pure Mathematics (2000). arXiv:math.DG/0004117
- 17.Trimble, T.: What are ‘fundamental \(n\)-groupoids’? Seminar at DPMMS, Cambridge, 24 August (1999)Google Scholar
- 18.User ‘Loop Space’ (http://mathoverflow.net/users/45/loop-space): What is the infinite-dimensional-manifold structure on the space of smooth paths mod thin homotopy? MathOverflow (2010) http://mathoverflow.net/q/17843 (version: 2010-03-17)
- 19.Wada, H.: Local connectivity of mapping spaces. Duke Math. J. 22, 419–425 (1955)MathSciNetCrossRefzbMATHGoogle Scholar