Advertisement

Journal of Homotopy and Related Structures

, Volume 12, Issue 1, pp 189–271 | Cite as

Gluing pseudo functors via n-fold categories

  • Weizhe ZhengEmail author
Article

Abstract

Gluing of two pseudo functors has been studied by Deligne, Ayoub, and others in the construction of extraordinary direct image functors in étale cohomology, stable homotopy, and mixed motives of schemes. In this article, we study more generally the gluing of finitely many pseudo functors. Given pseudo functors \(F_i:\mathcal {A}_i\rightarrow \mathcal {D}\) defined on sub-2-categories \(\mathcal {A}_i\) of a 2-category \(\mathcal {C}\), we are concerned with the problem of finding pseudo functors \(\mathcal {C}\rightarrow \mathcal {D}\) extending \(F_i\) up to pseudo natural equivalences. With the help of n-fold categories, we organize gluing data for n pseudo functors into 2-categories. We establish general criteria for equivalence between such 2-categories for n pseudo functors and for \(n-1\) pseudo functors, which can be applied inductively to the gluing problem. Results of this article are used in Zheng (Sci China Math 58(3):565–632, 2015) to construct extraordinary direct image functors in étale cohomology of Deligne-Mumford stacks.

Keywords

Pseudo functor Gluing data 2-Category n-Fold category Hypercube 

Mathematics Subject Classification

18D05 

Notes

Acknowledgments

In the course of this work the author has benefited very much from conversions with Yifeng Liu. The author also thanks Joseph Ayoub, Johan de Jong, Ofer Gabber, and Luc Illusie for useful discussions. The author is grateful to the referees for the numerous comments they made on previous versions of this article. This work was partially supported by China’s Recruitment Program of Global Experts; National Natural Science Foundation of China Grant 11321101; Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences; National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences.

References

  1. 1.
    Ayoub, J.: Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I. Astérisque 314 (2007)Google Scholar
  2. 2.
    Bastiani, A., Ehresmann, C.: Multiple functors. I. Limits relative to double categories. Cahiers Topologie Géom. Différentielle. 15(3):215–292 (1974)Google Scholar
  3. 3.
    Bénabou, J.: Catégories relatives. C. R. Acad. Sci. Paris 260, 3824–3827 (1965)Google Scholar
  4. 4.
    Borceux, F.: Handbook of categorical algebra 1. Basic category theory, Encyclopedia of mathematics and its applications, vol. 50. Cambridge University Press, Cambridge (1994)Google Scholar
  5. 5.
    Cisinski, D.-C., Déglise, F.: Triangulated categories of mixed motives. (2012, Preprint). arXiv:0912.2110v3
  6. 6.
    Deligne, P.: Cohomologie à supports propres. In Théorie des topos et cohomologie étale des schémas, Lecture Notes in Mathematics, vol. 305, pp. 250–480. Springer-Verlag, Berlin, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), dirigé par M. Artin, A. Grothendieck, et J.-L. Verdier, Tome 3, Exposé XVII (1972)Google Scholar
  7. 7.
    Ehresmann, C.: Catégories structurées. Ann. Sci. École Norm. Sup. 3(80), 349–426 (1963)zbMATHGoogle Scholar
  8. 8.
    Ehresmann, C.: Catégories structurées. III. Quintettes et applications covariantes. In: Topol. et Géom. Diff. (Sém. C. Ehresmann), vol. 5, p. 21. Institut H. Poincaré, Paris (1963)Google Scholar
  9. 9.
    Ehresmann, C.: Catégories et structures. Dunod, Paris (1965)zbMATHGoogle Scholar
  10. 10.
    Fiore, T.M.: Pseudo algebras and pseudo double categories. J. Homotopy Relat. Struct. 2(2), 119–170 (2007)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Fiore, T.M., Paoli, S.: A Thomason model structure on the category of small \(n\)-fold categories. Algebr. Geom. Topol. 10(4), 1933–2008 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gabber, O., Ramero, L.: Foundations for almost ring theory. (2015, Preprint). arXiv:math/0409584v10
  13. 13.
    Gabriel, P., Zisman, M.: Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35. Springer-Verlag, Berlin (1967)Google Scholar
  14. 14.
    Gray, J.W.: Formal category theory: adjointness for \(2\)-categories. Lecture Notes in Mathematics, vol. 391. Springer-Verlag, Berlin-New York (1974)Google Scholar
  15. 15.
    Gray, J.W.: Coherence for the tensor product of 2-categories, and braid groups. In: Algebra, topology, and category theory (a collection of papers in honor of Samuel Eilenberg), pp. 63–76. Academic Press, New York (1976)Google Scholar
  16. 16.
    Grothendieck, A.: Catégorie fibrée et descente. In Revêtements étales et groupe fondamental, volume 3 of Documents Mathématiques, pp. 145–194. Société Mathématique de France, Séminaire de Géométrie Algébrique du Bois-Marie 1960–1961 (SGA 1), dirigé par A. Grothendieck, Exposé VI (2003)Google Scholar
  17. 17.
    Illusie, L.: Complexe cotangent et déformations. II. Lecture Notes in Mathematics, Vol. 283. Springer-Verlag, Berlin (1972)Google Scholar
  18. 18.
    Illusie, L., Zheng, W.: Odds and ends on finite group actions and traces. Int. Math. Res. Not. IMRN 2013(1), 1–62 (2013)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Liu, Y., Zheng, W.: Enhanced six operations and base change theorem for Artin stacks. (2014, Preprint). arXiv:1211.5948v2
  20. 20.
    Liu, Y., Zheng, W.: Gluing restricted nerves of \(\infty \)-categories. (2015, Preprint). arXiv:1211.5294v4
  21. 21.
    Lurie, J.: Higher topos theory. Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton (2009)Google Scholar
  22. 22.
    Shulman, M.: Comparing composites of left and right derived functors. N. Y. J. Math. 17, 75–125 (2011)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Street, R.: Categorical structures. In: Handbook of algebra, vol. 1, pp 529–577. Elsevier/North-Holland, Amsterdam (1996)Google Scholar
  24. 24.
    Zheng, W.: Six operations and Lefschetz-Verdier formula for Deligne-Mumford stacks. Sci. China Math. 58(3), 565–632 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Tbilisi Centre for Mathematical Sciences 2016

Authors and Affiliations

  1. 1.Morningside Center of MathematicsAcademy of Mathematics and Systems Science, Chinese Academy of SciencesBeijingChina

Personalised recommendations