Journal of Homotopy and Related Structures

, Volume 11, Issue 2, pp 333–374 | Cite as

Tree- versus graph-level quasilocal Poincaré duality on \(S^{1}\)

  • Theo Johnson-FreydEmail author


Among its many corollaries, Poincaré duality implies that the de Rham cohomology of a compact oriented manifold is a commutative Frobenius algebra. Focusing on the case of \(S^1\), this paper studies the question of whether this commutative Frobenius algebra structure lifts to a “homotopy” commutative Frobenius algebra structure at the cochain level, under a mild locality-type condition called “quasilocality”. The answer turns out to depend on the choice of context in which to do homotopy algebra—there are two reasonable worlds in which to study structures (like Frobenius algebras) that involve many-to-many operations. If one works at “tree level”, we prove that there is a homotopically-unique quasilocal cochain-level homotopy Frobenius algebra structure lifting the Frobenius algebra structure on cohomology. However, if one works instead at “graph level”, we prove that a quasilocal lift does not exist.


Homotopy algebra Poincare duality Locality Properads dioperads Obstruction complexes 



Gabriel C. Drummond-Cole provided enlightening discussions about both the general meaning and the onerous details of the calculations in this paper. Many of those conversations occurred while I was a visitor at the IBS Center for Geometry and Physics (Korea), where I was also provided generous hospitality and a comfortable work environment. The anonymous referee provided many valuable comments improving the content and exposition of this paper. This work is supported by the NSF Grant DMS-1304054.


  1. 1.
    Dito, G.: The necessity of wheels in universal quantization formulas (2013). arXiv:1308.4386
  2. 2.
    Deligne, P., Morgan, J.W.: Notes on supersymmetry (following Joseph Bernstein). In: Quantum Fields and Strings: A Course for Mathematicians, vols. 1, 2 (Princeton, NJ, 1996/1997), pp. 41–97. Amer. Math. Soc., Providence (1999). (MR1701597)Google Scholar
  3. 3.
    Gan, W.L.: Koszul duality for dioperads. Math. Res. Lett., 10(1), 109–124 (2003). (MR1960128). arXiv:math/0201074
  4. 4.
    Getzler, E., Kapranov, M.M.: Cyclic operads and cyclic homology. In: Geometry, Topology, and Physics. Conf. Proc. Lecture Notes Geom. Topology, vol. IV, pp. 167–201. Int. Press, Cambridge (1995). (MR1358617)Google Scholar
  5. 5.
    Hirsh, J., Millès, J.: Curved Koszul duality theory. Math. Ann. 354(4), 1465–1520 (2012). (MR2993002). doi: 10.1007/s00208-011-0766-9
  6. 6.
    Johnson-Freyd, T.: Poisson AKSZ theories and their quantizations. In: Proceedings of the Conference String-Math 2013. Proceedings of Symposia in Pure Mathematics, vol. 88, pp. 291–306. Amer. Math. Soc., Providence (2014). doi: 10.1090/pspum/088. arXiv:1307.5812
  7. 7.
    Loday, J.-L., Vallette, B.: Algebraic operads. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346. Springer, Heidelberg (2012). (MR2954392). doi: 10.1007/978-3-642-30362-3
  8. 8.
    Merkulov, S.A.: Prop profile of deformation quantization and graph complexes with loops and wheels (2004). arXiv:math/0412257
  9. 9.
    Merkulov, S., Vallette, B.: Deformation theory of representations of prop(erad)s. I. J. Reine Angew. Math. 634, 51–106 (2009). (MR2560406). doi: 10.1515/CRELLE.2009.069
  10. 10.
    Merkulov, S., Vallette, B.: Deformation theory of representations of prop(erad)s. II. J. Reine Angew. Math. 636, 123–174 (2009). (MR2572248). doi: 10.1515/CRELLE.2009.084
  11. 11.
    Serre, J.-P.: How to write mathematics badly. Youtube Video. Accessed 6 Jan 2015
  12. 12.
    Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967). (MR0225131)Google Scholar
  13. 13.
    Vallette, B.: A Koszul duality for PROPs. Trans. Am. Math. Soc. 359(10), 4865–4943 (2007). (MR2320654). doi: 10.1090/S0002-9947-07-04182-7
  14. 14.
    Vallette, B.: Algebra + Homotopy = Operad. (2012). arXiv:1202.3245
  15. 15.
    Willwacher, T: The obstruction to the existence of a loopless star product. C. R. Math. Acad. Sci. Paris 352(11), 881–883 (2014). (MR3268756). doi: 10.1016/j.crma.2014.09.018. arXiv:1309.7921

Copyright information

© Tbilisi Centre for Mathematical Sciences 2015

Authors and Affiliations

  1. 1.Department of MathematicsNorthwestern UniversityEvanstonUSA

Personalised recommendations