Journal of Homotopy and Related Structures

, Volume 8, Issue 1, pp 117–125 | Cite as

Comparing minimal simplicial models

Article

Abstract

We compare minimal combinatorial models of homotopy types: arbitrary simplicial complexes, flag complexes and order complexes. Flag complexes are the simplicial complexes which do not have the boundary of a simplex of dimension greater than one as an induced subcomplex. Order complexes are classifying spaces of posets and they correspond to models in the category of finite T0-spaces. In particular, we prove that stably, that is after a suitably large suspension, the optimal flag complex representing a homotopy type is approximately twice as big as the optimal simplicial complex with that property (in terms of the number of vertices). We also investigate some related questions.

Keywords

Triangulation Simplicial complex Minimal model Homotopy type 

Mathematics Subject Classification (1991)

55P10 55U10 55P40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamaszek, M.: Maximal Betti Number of a Flag Simplicial Complex. arxiv/1109.4775 Google Scholar
  2. 2.
    Barmak, J.A.: Algebraic Topology of Finite Topological Spaces and Applications, Lecture Notes in Mathematics, vol. 2032. Springer, Berlin-Heidelberg (2011)Google Scholar
  3. 3.
    Barmak J.A., Minian E.G.: Minimal finite models. J. Homotopy Relat. Struct 2(1), 127–140 (2007)MathSciNetMATHGoogle Scholar
  4. 4.
    Hardie K.A., Vermeulen J.J.C., Witbooi P.J.: A nontrivial pairing of finite T 0 spaces. Topol. Appl. 125(3), 533–542 (2002)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Joswig M., Lutz F.H.: One-point suspensions and wreath products of polytopes and spheres. J. Combin. Theory Ser. A 110(2), 193–216 (2005)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Kahle M.: Topology of random clique complexes. Discrete Math. 309(6), 1658–1671 (2009)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Katzman M.: Characteristic-independence of Betti numbers of graph ideals. J. Combin. Theory Ser. A 113, 435–454 (2006)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kozlov D.: Convex hulls of f- and β-vector. Discrete Comput. Geom. 18(4), 421–431 (1997)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Kozlov, D.: Combinatorial Algebraic Topology Algorithms and Computation in Mathematics, vol. 21. Springer, Berlin, Heidelberg (2008)Google Scholar
  10. 10.
    May, J.P.: Lecture notes about finite spaces for REU (2003). http://math.uchicago.edu/~may/finite.html
  11. 11.
    McDuff D.: On the classifying spaces of discrete monoids. Topology 18(4), 313–320 (1979)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Stong R.E.: Finite topological spaces. Trans. Am. Math. Soc 123, 325–340 (1966)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Weng, D.: On minimal finite models, a REU paper. http://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Weng.pdf

Copyright information

© Tbilisi Centre for Mathematical Sciences 2012

Authors and Affiliations

  1. 1.Mathematics Institute and DIMAPUniversity of WarwickCoventryUK

Personalised recommendations