Journal of Homotopy and Related Structures

, Volume 8, Issue 1, pp 117–125 | Cite as

Comparing minimal simplicial models

  • Michał AdamaszekEmail author


We compare minimal combinatorial models of homotopy types: arbitrary simplicial complexes, flag complexes and order complexes. Flag complexes are the simplicial complexes which do not have the boundary of a simplex of dimension greater than one as an induced subcomplex. Order complexes are classifying spaces of posets and they correspond to models in the category of finite T 0-spaces. In particular, we prove that stably, that is after a suitably large suspension, the optimal flag complex representing a homotopy type is approximately twice as big as the optimal simplicial complex with that property (in terms of the number of vertices). We also investigate some related questions.


Triangulation Simplicial complex Minimal model Homotopy type 

Mathematics Subject Classification (1991)

55P10 55U10 55P40 


  1. 1.
    Adamaszek, M.: Maximal Betti Number of a Flag Simplicial Complex. arxiv/1109.4775 Google Scholar
  2. 2.
    Barmak, J.A.: Algebraic Topology of Finite Topological Spaces and Applications, Lecture Notes in Mathematics, vol. 2032. Springer, Berlin-Heidelberg (2011)Google Scholar
  3. 3.
    Barmak J.A., Minian E.G.: Minimal finite models. J. Homotopy Relat. Struct 2(1), 127–140 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Hardie K.A., Vermeulen J.J.C., Witbooi P.J.: A nontrivial pairing of finite T 0 spaces. Topol. Appl. 125(3), 533–542 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Joswig M., Lutz F.H.: One-point suspensions and wreath products of polytopes and spheres. J. Combin. Theory Ser. A 110(2), 193–216 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Kahle M.: Topology of random clique complexes. Discrete Math. 309(6), 1658–1671 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Katzman M.: Characteristic-independence of Betti numbers of graph ideals. J. Combin. Theory Ser. A 113, 435–454 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kozlov D.: Convex hulls of f- and β-vector. Discrete Comput. Geom. 18(4), 421–431 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Kozlov, D.: Combinatorial Algebraic Topology Algorithms and Computation in Mathematics, vol. 21. Springer, Berlin, Heidelberg (2008)Google Scholar
  10. 10.
    May, J.P.: Lecture notes about finite spaces for REU (2003).
  11. 11.
    McDuff D.: On the classifying spaces of discrete monoids. Topology 18(4), 313–320 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Stong R.E.: Finite topological spaces. Trans. Am. Math. Soc 123, 325–340 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Weng, D.: On minimal finite models, a REU paper.

Copyright information

© Tbilisi Centre for Mathematical Sciences 2012

Authors and Affiliations

  1. 1.Mathematics Institute and DIMAPUniversity of WarwickCoventryUK

Personalised recommendations