Synthesis, Characterization and Performance Evaluation of a Solid Acid Catalyst Prepared from Coconut Shell for Hydrolyzing Pretreated Acacia nilotica Heartwood

  • Abhyuday MallickEmail author
  • Manikuntala Mukhopadhyay
  • Soumendranath Ash
Original Contribution


The present investigation aims to develop a solid acid-type heterogeneous catalyst for the hydrolysis of biomass using coconut shell, an inexpensive and easily available material, as yet unexplored in this field. Catalyst characterization by scanning electron micrography, X-ray diffraction, FTIR spectroscopy and nitrogen adsorption has been carried out. Pretreated sawdust from Acacia nilotica heartwood and microcrystalline cellulose were hydrolyzed in aqueous medium using the developed catalyst. Maximum sugar yields of 91% and 93% were obtained on hydrolysis of pretreated sawdust and microcrystalline cellulose, respectively. The principal hydrolysis product was glucose with a selectivity of 98%. These results highlight the potential of the developed catalyst for use in industrial biomass saccharification.


Lignocellulosic biomass Biomass saccharification Sulfonated activated carbon Response surface analysis 



Reaction temperature (°C)


Catalyst/biomass ratio



The authors express their heartfelt thanks to the laboratory assistants of the Department of Chemical Engineering, University of Calcutta, India, for their cooperation in carrying out the work. The authors also gratefully thank the SEM section of the Department of Metallurgical Engineering and Material Science, Jadavpur University, India, for their cooperation. The authors would also like to thank the Department of Polymer Science and Technology, University of Calcutta, for providing the facilities for XRD and FTIR. Last, but not the least, the authors would like to thank the authorities of the University of Calcutta, for providing the financial support for this research work.


  1. 1.
    S. Bhattacharya, S. Dutta, S. Datta, C. Bhattacharjee, J. Inst. Eng. India Ser. E 93(1), 37 (2012)CrossRefGoogle Scholar
  2. 2.
    Z. Zhang, Z.K. Zhao, Carbohydr. Res. 344, 2069 (2009)CrossRefGoogle Scholar
  3. 3.
    H. Cai, C. Li, A. Wang, G. Xu, T. Zhang, Appl. Catal. B 123–124, 333 (2012)CrossRefGoogle Scholar
  4. 4.
    A. Takagaki, C. Tagusagawa, K. Domen, Chem. Commun. 42, 5363 (2008)CrossRefGoogle Scholar
  5. 5.
    H. Kobayashi, T. Komanoya, K. Hara, A. Fukuoka, ChemSusChem 3, 440 (2010)CrossRefGoogle Scholar
  6. 6.
    R. Rinaldi, R. Palkovits, F. Schüth, Agnew. Chem. Int. Ed. 47, 8047 (2008)CrossRefGoogle Scholar
  7. 7.
    S. Kim, A. Dwiatmoko, J.W. Choi, Y. Suh, D.J. Suh, M. Oh, Bioresour. Technol. 101, 8273 (2010)CrossRefGoogle Scholar
  8. 8.
    J. Hegner, K.C. Pereira, B. DeBoef, L.B. Lucht, Tetrahedron Lett. 51, 2356 (2010)CrossRefGoogle Scholar
  9. 9.
    S. Saganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, J. Am. Chem. Soc. 130, 12787 (2008)CrossRefGoogle Scholar
  10. 10.
    M. Kitano, K. Arai, A. Kodama, T. Kousaka, K. Nakajima, S. Hayashi, M. Hara, Catal. Lett. 131, 242 (2009)CrossRefGoogle Scholar
  11. 11.
    K. Shimizu, H. Furukawa, N. Kobayashi, Y. Itaya, A. Satsuma, Green Chem. 11, 1627 (2009)CrossRefGoogle Scholar
  12. 12.
    J. Tian, J. Wang, S. Zhao, C. Jiang, X. Jhang, X. Wang, Cellulose 17, 587 (2010)CrossRefGoogle Scholar
  13. 13.
    S. Van de Vyver, L. Peng, J. Geboers, H. Schepers, F. de Clippel, C.J. Gommes, B. Goderis, P.A. Jacobs, B.F. Sels, Green Chem. 12, 1560 (2010)CrossRefGoogle Scholar
  14. 14.
    D. Lai, L. Deng, J. Li, B. Liao, Q. Guo, Y. Fu, ChemSusChem 4, 55 (2011)CrossRefGoogle Scholar
  15. 15.
    A. Vu, R. Wickramasinghe, X. Qian, Ind. Eng. Chem. Res. 57, 4514 (2018)CrossRefGoogle Scholar
  16. 16.
    Y.B. Huang, Y. Fu, Green Chem. 15, 1095 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Goswami, S. Meena, S. Navatha, K.N. Prasanna Rani, A. Pandey, R.K. Sukumaran, R.B.N. Prasad, B.L.A. Prabhavathi Devi, Biores. Technol. 188, 99 (2015)CrossRefGoogle Scholar
  18. 18.
    X. Li, F. Shu, C. He, S. Liu, N. Leksawasdi, Q. Wang, W. Qi, MdA Alam, Z. Yuan, Y. Gao, RSC Adv. 8, 10922 (2018)CrossRefGoogle Scholar
  19. 19.
    Y. Jiang, X. Li, X. Wang, L. Meng, H. Wang, G. Peng, X. Wang, X. Mu, Green Chem. 14, 2162 (2012)CrossRefGoogle Scholar
  20. 20.
    W. Namchot, N. Panyacharay, W. Jonglertjunya, C. Sakdaronnarong, Fuel 116, 608 (2014)CrossRefGoogle Scholar
  21. 21.
    A. Mallick, S.N. Ash, D.K. Mahapatra, J. Inst. Eng. India Ser. E 97(1), 39 (2016)CrossRefGoogle Scholar
  22. 22.
    R. Child, S. Ramanathan, J. Am. Chem. Soc. 60(6), 1506 (1938)CrossRefGoogle Scholar
  23. 23.
    D. Lee, Molecules 18, 8168 (2013)CrossRefGoogle Scholar
  24. 24.
    G.I. Miller, Anal. Chem. 31(3), 426 (1959)CrossRefGoogle Scholar
  25. 25.
    W. Qi, S.P. Zhang, Q.L. Xu, Z.W. Ren, Y.J. Yan, Chin. J. Process Eng. 8(6), 1132 (2008)Google Scholar
  26. 26.
    Y.J. Liou, W.J. Huang, J. Mater. Sci. Technol. 29(5), 406 (2013)CrossRefGoogle Scholar
  27. 27.
    P.D. Cara, M. Pagliaro, A. Bmekawy, D.R. Brown, P. Verschuren, N.R. Shiju, G. Rothenberg, Catal. Sci. Technol 3, 2057 (2013)Google Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  • Abhyuday Mallick
    • 1
    Email author
  • Manikuntala Mukhopadhyay
    • 2
  • Soumendranath Ash
    • 2
  1. 1.Department of Chemical EngineeringHeritage Institute of TechnologyKolkataIndia
  2. 2.Department of Chemical EngineeringUniversity of CalcuttaKolkataIndia

Personalised recommendations