Treatment of Methylene Blue Dye Using Immersed Lamp Photocatalytic Reactor: 5 L Scale Study

  • Pravin S. Tadkar
  • Palas K. Borkar
  • Sayali N. Gholap
  • Vitthal L. GoleEmail author
Original Contribution


The present investigation studied methylene blue dye treatment using 5-L immersed lamp photocatalytic (UV) reactor. Dye treatment further studied using catalysts effects such as H2O2, ZnO, and TiO2. The marginal higher degradation was obtained for ZnO/UV compared to TiO2/UV effect, and it may be due to higher bandgap energy of ZnO. The maximum degradation was obtained for H2O2/UV (2 g/L) effect. The optimum findings of the present work were initial dye concentration: 31.3 µM, pH: 11, operating temperature: 28 °C, moles of dye removed: 30.1 ± 1.6 µM, moles of total organic carbon removed: 350.4 ± 17.5 µM, rate constant (pseudo-first order): 18.3 ± 0.7 × 10−3 min−1, and energy: 9.4 ± 0.4 × 10−3 µM. The present work showed the higher potential of scale-up photocatalytic reactor for treatment dye pollutants.


Photocatalytic reactor Dye degradation Hydroxyl radicals Methylene blue Scale operation TOC 



  1. 1.
    S. Hiremath, C. Vidya, M.A.L. Antonyraj, M.N. Chandraprabha, S. Seemashri, B. Shetty, A. Belamkar, R. Nair, Photocatalytic degradation study of Rhodamine-B by green synthesized nano TiO2. Asian J. Chem. 29, 221–225 (2017)CrossRefGoogle Scholar
  2. 2.
    I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B Environ. 49, 1–14 (2004)CrossRefGoogle Scholar
  3. 3.
    S. Dutta, Dynamic simulation of batch photocatalytic reactor (BPR) for wastewater treatment. J. Inst. Eng. India Ser. E 93, 25–30 (2012)CrossRefGoogle Scholar
  4. 4.
    A. Balcha, O.P. Yadav, Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol–gel methods. Environ. Sci. Pollut. Res. 23, 25485–25493 (2016)CrossRefGoogle Scholar
  5. 5.
    S.J. Ki, K.J. Jeon, Y.K. Park, S. Jeong, H. Lee, S.C. Jung, Improving removal of 4-chlorophenol using a TiO2 photocatalytic system with microwave and ultraviolet radiation. Catal. Today 293–294, 15–22 (2017)CrossRefGoogle Scholar
  6. 6.
    N. Wang, P. Wang, Study and application status of microwave in organic wastewater treatment—a review. Chem. Eng. J. 283, 193–214 (2016)CrossRefGoogle Scholar
  7. 7.
    V.L. Gole, P.R. Gogate, Degradation of brilliant green dye using combined treatment strategies based on different irradiations. Sep. Purif. Technol. 133, 212–220 (2014)CrossRefGoogle Scholar
  8. 8.
    Y.A. Maksoud, E. Imam, A. Ramadan, TiO2 solar photocatalytic reactor systems: selection of reactor design for scale-up and commercialization—analytical review. Catalysts 6, 138–163 (2016)CrossRefGoogle Scholar
  9. 9.
    V.L. Gole, A. Alhat, Treatment of malachite green dye using combined oxidation techniques based on different irradiation. Korean J. Chem. Eng. 34, 1393–1399 (2017)CrossRefGoogle Scholar
  10. 10.
    Z.M. Abou-Gamra, M.A. Ahmed, Synthesis of mesoporous TiO2–curcumin nanoparticles for photocatalytic degradation of methylene blue dye. J. Photochem. Photobiol. B 160, 134–141 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Mahanthappa, N. Kottam, S. Yellappa, Enhanced photocatalytic degradation of methylene blue dye using CuS–CdS nanocomposite under visible light irradiation. Appl. Surf. Sci. 475, 828–838 (2019)CrossRefGoogle Scholar
  12. 12.
    A. Chanu, W.J. Singh, K.J. Singh, K.N. Dev, Effect of operational parameters on the photocatalytic degradation of methylene blue dye solution using manganese doped ZnO nanoparticles. Res. Phys. 12, 1230–1237 (2019)Google Scholar
  13. 13.
    A. Joseph, K. Vellayan, B. González, M.A. Vicente, A. Gil, Effective degradation of methylene blue in aqueous solution using Pd-supported Cu-doped Ti-pillared montmorillonite catalyst. Appl. Clay Sci. 168, 7–10 (2019)CrossRefGoogle Scholar
  14. 14.
    S.P. Mardikar, S. Kulkarni, P.V. Adhyapak, Sunlight driven highly efficient degradation of methylene blue by CuO–ZnO nanoflowers. J. Environ. Chem. Eng. (2019). CrossRefGoogle Scholar
  15. 15.
    L. Gan, L. Xu, S. Shang, X. Zhou, L. Meng, Visible light induced methylene blue dye degradation photo-catalyzed by WO3/graphene nanocomposites and the mechanism. Ceram. Int. 42, 15235–15241 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Jafarikojour, B. Dabirab, M. Sohrabi, S.J. Royaee, Application of a new immobilized impinging jet stream reactor for photocatalytic degradation of phenol: reactor evaluation and kinetic modelling. J. Photochem. Photobiol. A 364, 613–624 (2018)CrossRefGoogle Scholar
  17. 17.
    P. Klán, M. Vavrik, Non-catalytic remediation of aqueous solutions by microwave-assisted photolysis in the presence of H2O2. J. Photochem. Photobiol. A 177, 24–33 (2006)CrossRefGoogle Scholar
  18. 18.
    S. Adishkumar, S. Kanmani, Treatment of phenolic wastewaters in single baffle reactor by Solar/TiO2/H2O2 process. Desalin. Water Treat. 24, 67–73 (2010)CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  • Pravin S. Tadkar
    • 1
  • Palas K. Borkar
    • 1
  • Sayali N. Gholap
    • 1
  • Vitthal L. Gole
    • 1
    • 2
    Email author
  1. 1.Department of Chemical EngineeringAISSMS College of EngineeringPuneIndia
  2. 2.Department of Chemical EngineeringMadan Mohan Malaviya University of TechnologyGorakhpurIndia

Personalised recommendations