Advertisement

Functionalization, Uptake and Release Studies of Active Molecules Using Halloysite Nanocontainers

  • Shailesh Adinath Ghodke
  • Shirish Hari SonawaneEmail author
  • Bharat Apparao Bhanvase
  • Satyendra Mishra
  • Kalpana Shrikant Joshi
  • Irina Potoroko
Original Contribution

Abstract

Halloysite nanotubes are inorganic clay minerals of kaolin group. Halloysite possess unique morphology, chemical composition, cation exchange capacity and charge properties making them ideal candidate for various industrial application. In the present study, an attempt was made to functionalize the exterior surface of halloysite nanocontainer. The surface of halloysite nanocontainer was modified using tetrabutylammonium chloride (TBAC). Further an attempt was made to employ these functionalized nanocontainers to uptake and release the active molecule (dye Acid Red1). TBAC-modified nanocontainer indicated higher adsorption capacity of 4.54 mg/g as compared to unmodified nanocontainer (3.08 mg/g). The release behaviour of active molecule from loaded nanocontainers was found with change in pH and temperature. Since the loading characteristics of functionalized nanocontainers were found to be adsorption dependent, parameters such as effect of time, loading, pH, initial concentration were studied for analysing the loading characteristics. The dye release from 0.5 g dye-loaded TBAC-modified nanocontainers at pH 11 and at 32 °C was found to be 92%. Lastly, the release readings were analysed for the best fit (97%) using permeation kinetic model (Peppa’s model).

Keywords

Halloysite Nanocontainers Fuctionalization Controlled release Active molecule 

Abbreviation

AR

Acid Red 1 (dye)

CH3COOH

Acetic acid

CH3COONa

Sodium acetate

DI

Deionized water

HCl

Hydrochloric acid

HDTMA

Hexadecyltrimethylammonium bromide

HNT

Halloysite nanotubes

Na2HPO4

Disodium hydrogen phosphate

NaCl

Sodium chloride

NaH2PO4

Monosodium phosphate

TBAC

Tetrabutylammonium chloride

Symbol

C0

Initial solution concentration in ppm

Ce

Solution concentration at equilibrium in ppm

Ced

Equilibrium concentration of the dye in the solution in (mg/L)

kad1

Rate constant of pseudo-first-order adsorption (min−1)

kad2

Rate constant of pseudo-second-order adsorption (g mg−1 min−1)

Kf and n

Physical constants of the Freundlich adsorption isotherm

kt

Release rate constant

M

Mass of nanocontainers in g

n

Release exponent indicating transport mechanism

q0

Amount of dye release in the solution at time t = 0

qe

Amount of adsorbed dye on the adsorbent surface in (mg/g) at equilibrium

qt

Amount of dye release in the solution at time t

Qmax

Maximum adsorption capacity (mg/g)

Qt

Amount of dye release in given time

V

Volume of solution in litre

β

Signifies the constant related to the energy of adsorption

Notes

References

  1. 1.
    A.G. Skirtach, O. Kreft, Stimuli sensitive nanotechnology for drug delivery, in Nanotechnology in drug delivery, vol. 10, ed. by M.M. Devilliers, et al. (Springer, New York, 2009), pp. 545–578CrossRefGoogle Scholar
  2. 2.
    S.M. Moghimi, A.C. Hunter, J.C. Murray, Nanomedicine: current status and future prospects. J. Fed. Amer. Soc. Exp. Biol. 19, 311–330 (2005)Google Scholar
  3. 3.
    D. Borisova, H. Mohwald, D. Shchukin, Influence of embedded nanocontainers on the efficiency of active anticorrosive coatings for aluminum alloys part I: influence of nanocontainer concentration. Appl. Mater. Interfaces 4, 2931–2939 (2012)CrossRefGoogle Scholar
  4. 4.
    S.A. Ghodke, S.H. Sonawane, B.A. Bhanvase, S. Mishra, K.S. Joshi, Studies on fragrance delivery from inorganic nanocontainers: encapsulation, release and modeling studies. J. Inst. Eng. India Ser. E 96(1), 45–53 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Zhou, T.S.H. Leong, S. Melino, F. Cavalieri, M. Ashokkumar, S. Kentish, Sonochemical synthesis of liquid-encapsulated lysozyme microspheres. Ultrason. Sonochem. 17, 333–337 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Kumar, L.D. Stephenson, J.N. Murray, Self-healing coatings for steel. Prog. Org. Coat. 55, 244–253 (2006)CrossRefGoogle Scholar
  7. 7.
    S.H. Sonawane, B.A. Bhanvase, A.A. Jamali, S.K. Dubey, S.S. Kale, D.V. Pinjari, A.B. Pandit, Improved active anticorrosion coatings using layer-by-layer assembled ZnO nanocontainers with benzotriazole. Chem. Eng. J. 189–190, 464–472 (2012)CrossRefGoogle Scholar
  8. 8.
    D. Quintanar, E. Allémann, H. Fessi, E. Doelker, Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev. Ind. Pharm. 24, 1113–1128 (1998)CrossRefGoogle Scholar
  9. 9.
    C.E. Mora-Huertas, H. Fessi, A. Elaissari, Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 385, 113–142 (2010)CrossRefGoogle Scholar
  10. 10.
    E. Fleige, M.A. Quadir, R. Haag, Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv. Drug Del. Rev. 64, 866–884 (2012)CrossRefGoogle Scholar
  11. 11.
    G.V. Joshi, B.D. Kevadiya, H.C. Bajaj, Design and evaluation of controlled drug delivery system of buspirone using inorganic layered clay mineral. Micropor. Mesopor. Mater. 132(3), 526–530 (2010)CrossRefGoogle Scholar
  12. 12.
    Z. Zhong Zhang, D.L. Sparks, N.C. Scrivner, Sorptlon and desorption of quaternary amine cations on clays. Environ. Sci. Technol. 27, 1625–1631 (1993)CrossRefGoogle Scholar
  13. 13.
    M.G. Apps, A.J. Ammit, A. Gu, N.J. Wheate, Analysis of montmorillonite clay as a vehicle in platinum anticancer drug delivery. Inorg. Chimica. Acta. 421, 513–518 (2014)CrossRefGoogle Scholar
  14. 14.
    S.A. Boyd, M.M. Mortland, C.T. Chiou, Sorption characteristic of organic compounds on hexadecyltrimethylammonium-smectite. Soil Sci. Soc. Am. J. 52, 652–657 (1998)CrossRefGoogle Scholar
  15. 15.
    S.H. Sonawane, P.L. Chaudhari, S.A. Ghodke, S. Ambade, A. Mirikar, A. Bane, S. Gulig, Combined effect of ultrasound and nanoclay on adsorption of phenol. Ultrason. Sonochem. 15, 1033–1037 (2008)CrossRefGoogle Scholar
  16. 16.
    M.I. Carretero, M. Pozo, Clay and non-clay minerals in the pharmaceutical and cosmetic industries. Part II Active ingredients. Appl. Clay. Sci. 47, 171–181 (2010)CrossRefGoogle Scholar
  17. 17.
    C. Vettori, D. Paffetti, G. Pieramellara, E. Stotzky, E. Gallori, Amplification of bacterial DNA bound on clay minerals by random amplified polymorphic DNA (RAPD) technique. FEMS Microbiol. Ecol. 20, 251–260 (1996)CrossRefGoogle Scholar
  18. 18.
    M.A. Osman, M. Ploetze, U.W. Suter, Surface treatment of clay minerals thermal stability, basal-plane spacing and surface coverage. J. Mater. Chem. 13(9), 2359–2366 (2003)CrossRefGoogle Scholar
  19. 19.
    H.Y. Wei, N. Li, D.S. Tong, C.H. Zhou, C.X. Lin, C.Y. Xu, Adsorption of proteins and nucleic acids on clay minerals and their interactions: a review. Appl. Clay Sci. 80–81, 443–452 (2013)Google Scholar
  20. 20.
    E. Abdullayev, R. Price, D. Shchukin, Y. Lvov, Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. Appl. Mater. Interf. 1(7), 1437–1443 (2009)CrossRefGoogle Scholar
  21. 21.
    V. Vergaro, Y.M. Lvov, S. Leporatti, Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromol. Biosci. 12(9), 1265–1271 (2012)CrossRefGoogle Scholar
  22. 22.
    H. Hemmatpour, V. Haddadi-Asl, H. Roghani-Mamaqani, Synthesis of pH-sensitive poly (N, N-dimethylaminoethyl methacrylate)-grafted halloysite nanotubes for adsorption and controlled release of DPH and DS drugs. Polymer 65, 143–153 (2015)CrossRefGoogle Scholar
  23. 23.
    E. Joussein, S. Petit, J. Churchman, B. Delvaux, B. Theng, D. Righi, Halloysite clay minerals—a review. Clay Miner. 40, 383–426 (2005)CrossRefGoogle Scholar
  24. 24.
    E. Abdullayev, Y. Lvov, Clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers. J. Mater. Chem. 20, 6681–6687 (2010)CrossRefGoogle Scholar
  25. 25.
    Y.M. Lvov, D.G. Shchukin, H. Mohwald, R.R. Price, Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2(5), 814–820 (2008)CrossRefGoogle Scholar
  26. 26.
    S.R. Levis, P.B. Deasy, Characterisation of halloysite for use as a microtubular drug delivery system. Int. J. Pharm. 243, 125–134 (2002)CrossRefGoogle Scholar
  27. 27.
    Q. Wang, J. Zhang, A. Wang, Alkali activation of halloysite for adsorption and release of ofloxacin, Alkali activation of halloysite for adsorption and release of ofloxacin. Appl. Surf. Sci. 287, 54–61 (2013)CrossRefGoogle Scholar
  28. 28.
    A. Zhang, L. Pan, H. Zhang, S. Liu, Y. Ye, M. Xia, X. Chen, Effects of acid treatment on the physico-chemical and pore characteristics of halloysite. Colloids Surf. B 396, 182–188 (2012)CrossRefGoogle Scholar
  29. 29.
    E. Abdullayev, A. Joshi, W. Wei, Y. Zhao, Y. Lvov, Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6(8), 7216–7226 (2012)CrossRefGoogle Scholar
  30. 30.
    W.O. Yah, A. Takahara, Y.M. Lvov, Selective modification of halloysite lumen with octadecyl phosphonic acid: new inorganic tubular micelle. Am. Chem. Soc. 134, 1853–1859 (2012)CrossRefGoogle Scholar
  31. 31.
    E. Horvath, J. Kristof, R. Kurdi, E. Mako, V. Khunova, Study of urea intercalation into halloysite by thermoanalytical and spectroscopic techniques. J. Therm. Anal. Calorim. 105, 53–59 (2011)CrossRefGoogle Scholar
  32. 32.
    P. Yuan, S.J. Antill, P.D. Southon, Z. Liu, C.J. Kepert, M.E.R. Green, J.M. Hook, Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J. Phys. Chem. C 112, 15742–15751 (2008)CrossRefGoogle Scholar
  33. 33.
    W. Jinhua, Z. Xiang, Z. Bing, Z. Yafei, Z. Rui, L. Jindun, C. Rongfeng, Rapid adsorption of Cr(VI) on modified halloysite nanotubes. Desalination 259, 22–28 (2010)CrossRefGoogle Scholar
  34. 34.
    M.M. Mortland, S. Shaobai, S.A. Boyd, Clay-organic complexes as adsorbents for phenol and chlorophenols. Clays Clay Miner. 34(5), 581–585 (1986)CrossRefGoogle Scholar
  35. 35.
    I.M.C. Lo, R.K.M. Mak, S.C.H. Lee, Modified clays for waste containment and pollutant attenuation. J. Environ. Eng. 123(1), 25–32 (1997)CrossRefGoogle Scholar
  36. 36.
    P. Luo, Y. Zhao, B. Zhang, J. Liu, Y. Yang, J. Liu, Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res. 44, 1489–1497 (2010)CrossRefGoogle Scholar
  37. 37.
    K.P. Nicolini, C.R. Fukamachi, F. Wypych, A.S. Mangrich, Dehydrated halloysite intercalated mechanochemically with urea: thermal behavior and structural aspects. J. Colloid Interface Sci. 338, 474–479 (2009)CrossRefGoogle Scholar
  38. 38.
    Q. He, D. Yang, X. Deng, Q. Wu, R. Li, Y. Zhai, L. Zhang, Preparation, characterization and application of N-2-Pyridylsuccinamic acid-functionalized halloysite nanotubes for solid-phase extraction of Pb(II). Water Res. 47, 3976–3983 (2013)CrossRefGoogle Scholar
  39. 39.
    S. Lagergren, About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetensk Handl. 24, 1–39 (1898)Google Scholar
  40. 40.
    Y. Zhao, B. Zhang, X. Zhang, J. Wang, J. Liu, R. Chen, Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions. J. Hazard. Mater. 178(1–3), 658–664 (2010)CrossRefGoogle Scholar
  41. 41.
    S. Rangabhashiyam, N. Selvaraju, Efficacy of unmodified and chemically modified Swietenia mahagoni shells for the removal of hexavalent chromium from simulated wastewater. J. Mol. Liq. 209, 487–497 (2015)CrossRefGoogle Scholar
  42. 42.
    E. Nakkeeran, S. Rangabhashiyam, M.S. Giri Nandagopal, N. Selvaraju, Removal of Cr(VI) from aqueous solution using Strychnos nux-vomica shell as an adsorbent. Desalin. Water Treat. 57(50), 23951–23964 (2016)CrossRefGoogle Scholar
  43. 43.
    S. Rangabhashiyam, M.S. Giri Nandagopal, E. Nakkeeran, N. Selvaraju, Adsorption of hexavalent chromium from synthetic and electroplating effluent on chemically modified Swietenia mahagoni shell in a packed bed column. J. Environ. Monitor. 188(7), 1–13 (2016)Google Scholar
  44. 44.
    F. Kiani, M. Dostali, A. Rostami, A.R. Khataee, Adsorption studies on the removal of Malachite Green from aqueous solutions onto halloysite nanotubes. Appl. Clay Sci. 54, 34–39 (2011)Google Scholar
  45. 45.
    G. Crini, H.N. Peindy, Adsorption of CI Basic Blue 9 on cyclodextrin-based material containing carboxylic groups. Dyes Pigm. 70, 204–211 (2006)CrossRefGoogle Scholar
  46. 46.
    S. Rangabhashiyam, E. Nakkeeran, N. Anu, N. Selvaraju, Biosorption potentials of a novel Ficus auriculata leaves powder for the sequestration of hexavalent chromium from aqueous solutions. Res. Chem. Intermed. 41(11), 8405–8424 (2015)CrossRefGoogle Scholar
  47. 47.
    E. Nakkeeran, N. Saranya, M.S. Giri Nandagopal, A. Santhiagu, N. Selvaraju, Hexavalent chromium removal from aqueous solutions by a novel powder prepared from Colocasia esculenta leaves. Int. J. Phytoremediation. 18(8), 812–821 (2016)CrossRefGoogle Scholar
  48. 48.
    S. Li, Removal of crystal violet from aqueous solution by sorption into semi interpenetrated networks hydrogels constituted of poly(acrylic acid-acrylamide methacylate) and amylase. Bioresour. Technol. 101, 2197–2202 (2010)CrossRefGoogle Scholar
  49. 49.
    N. Emad, J. Qada, G. Stephen, Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm. Chem. Eng. J. 124, 103–110 (2006)CrossRefGoogle Scholar
  50. 50.
    V.N. Ravella, R.R. Nadendla, N.C. Kesari, Design and evaluation of sustained release pellets of aceclofenac. J. Pharm. Res. 6, 525–531 (2013)Google Scholar
  51. 51.
    P. Costa, J.M.S. Lobo, Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 13, 123–133 (2001)CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  • Shailesh Adinath Ghodke
    • 1
  • Shirish Hari Sonawane
    • 2
    Email author
  • Bharat Apparao Bhanvase
    • 3
  • Satyendra Mishra
    • 1
  • Kalpana Shrikant Joshi
    • 4
  • Irina Potoroko
    • 5
  1. 1.University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaonIndia
  2. 2.Department of Chemical EngineeringNational Institute of TechnologyWarangalIndia
  3. 3.Department of Chemical Engineering, Laxminarayan Institute of TechnologyRashtrasant Tukadoji Maharaj Nagpur UniversityNagpurIndia
  4. 4.Department of BiotechnologySinhgad College of EngineeringPuneIndia
  5. 5.Department of Food and BiotechnologyFGAOU VO “South Ural State University” (NIU)ChelyabinskRussia

Personalised recommendations