Influence of process parameters on the yield of Mn3O4 through sonochemical route

  • Venkata Swamy NalajalaEmail author
  • Anoar Ali Khan
  • Subbaiah Tondepu
  • Venkata Ramana Avula
Original Contribution


In the present study, manganese oxide (Mn3O4) was synthesized sonochemically by considering manganese sulphate monohydrate as precursor. Initially, 0.1 M of manganese sulphate monohydrate dissolved in 60 ml of doubly distilled water; subsequently, 400 μl of ammonia solution (30% GR) is added to prepare the solution. The experimental variables selected in this study are sonication, sonication with oxygen bubbling, sonication with argon bubbling, adding H2O2 and butanol externally with mechanical stirring. The obtained samples characterized with XRD, FTIR, SEM and TEM to determine the phase purity, morphology and size of the particles. Yield of the end product is determined by weighing the sample obtained after drying. Yield of the product increased with external addition of H2O2 and oxygen bubbling. Morphology studies show that the product obtained is spherical and cubical in shape. The TEM image shows that particle size lies in the range of 20–50 nm in sonication applied experiments. Particle size reduced with applying sonication when compared to mechanical stirring. XRD studies show that the product obtained is Mn3O4.


Sonication Gas bubbling H2O2 Yield Mn3O4 



Authors gratefully acknowledge IIT Guwahati and VFSTR Deemed to be University for providing facilities to carry the work.


  1. 1.
    A.E. Fischer, A.P. Katherine, R.R. Debra, M.S. Rhonda, W.L. Jeffrey, Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett. 2, 281–286 (2007)CrossRefGoogle Scholar
  2. 2.
    Y. Zeheng, Z. Yuancheng, Z. Weiin, W. Xue, Q. Yitai, W. Xiaogang, Y. Shine, Nanorods of manganese oxides: synthesis, characterization and catalytic application. J. Solid State Chem. 179, 679–684 (2006)CrossRefGoogle Scholar
  3. 3.
    J.B. Fei, Y. Cui, X.H. Yan, W. Qi, Y. Yang, K.W. Wang, Q. He, J.B. Li, Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv. Mater. 20, 452–456 (2008)CrossRefGoogle Scholar
  4. 4.
    Z.Y. Yuan, Z. Zaolo, D. Gaohui, T.-Z. Ren, B.-L. Su, A simple method to synthesize single-crystalline manganese oxide nanowires. Chem. Phys. Lett. 378, 349–353 (2003)CrossRefGoogle Scholar
  5. 5.
    M. Kang, E.D. Park, J.M. Kim, J.E. Yie, Manganese oxide catalysts for NOX reduction with NH3 at low temperatures. Appl. Catal. A Gen. 327, 261–269 (2007)CrossRefGoogle Scholar
  6. 6.
    Y.-F. Han, F. Chen, Z. Zhong, K. Ramesh, L. Chen, E. Widjaja, Controlled synthesis, characterization and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15. J. Phys. Chem. B 110, 24450–24456 (2006)CrossRefGoogle Scholar
  7. 7.
    G. Laugel, J. Arichi, M. Moliere, A. Kiennemann, F. Garin, B. Louis, Metal oxides nanoparticles on SBA-15: efficient catalyst for methane combustion. Catal. Today 138, 38–42 (2008)CrossRefGoogle Scholar
  8. 8.
    E.J. Grootendorst, Y. Verbeek, V. Ponec, The role of the mars and van krevelen mechanism in the selective oxidation of nitrosobenzene and the deoxygenation of nitrobenzene on oxidic catalysts. J. Catal. 157, 706–712 (1995)CrossRefGoogle Scholar
  9. 9.
    L. Sanchez, J. Farcy, J.P.P. Ramos, L. Hernan, J. Morales, J.L. Tirado, Low-temperature mixed spinel oxide as lithium insertion compounds. J. Mater. Chem. 6, 37–39 (1996)CrossRefGoogle Scholar
  10. 10.
    Z.W. Chen, S.Y. Zhang, S. Tan, J. Wang, S.Z. Jin, Dependence of electronic structure on the grain size in Mn2O3 nanocrystals. Appl. Phys. A 78, 581–584 (2004)CrossRefGoogle Scholar
  11. 11.
    S.-N. Masoud, F. Davar, M. Mazaheri, Synthesis of Mn3O4 nanoparticles by thermal decomposition of a [bis(salicylidiminato)manganese(II)] complex. Polyhedron 27, 3467–3471 (2008)CrossRefGoogle Scholar
  12. 12.
    E. Finocchio, G. Busca, Characterization and hydrocarbon oxidation activity of coprecipitated mixed oxides Mn3O4/Al2O3. Catal. Today 70, 213–225 (2001)CrossRefGoogle Scholar
  13. 13.
    Z.W. Chen, J.K.L. Lai, C.H. Shek, Shape-controlled synthesis and nanostructure evolution of single-crystal Mn3O4 nanocrystals. Scripta Mater. 55, 735–738 (2006)CrossRefGoogle Scholar
  14. 14.
    H. Dhaouadi, A. Madani, F. Touati, Synthesis and spectroscopic investigations of Mn3O4 nanoparticles. Mater. Lett. 64, 2395–2398 (2010)CrossRefGoogle Scholar
  15. 15.
    L.-X. Yang, Y. Liang, H. Chen, Y.-F. Meng, W. Jiang, Controlled synthesis of Mn3O4 and MnCO3 in a solvothermal system. Mater. Res. Bull. 44, 1753–1759 (2009)CrossRefGoogle Scholar
  16. 16.
    A. Askarinezad, A. Morsali, Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4. Ultrason. Sonochem. 16, 124–131 (2009)CrossRefGoogle Scholar
  17. 17.
    V. Ganesh Kumar, D. Aurbuch, A. Gedanken, A comparison between hot-hydrolysis and sonolysis of various Mn(II) salts. Ultrason. Sonochem. 10, 17–23 (2003)CrossRefGoogle Scholar
  18. 18.
    V. Ganesh Kumar, D. Aurbuch, A. Gedanken, Influence of pH on the structure of the aqueous sonolysis products of manganese (III) acetylacetonate. J. Mater. Res. 17, 1706–1710 (2002)CrossRefGoogle Scholar
  19. 19.
    I.K. Gopalakrishnan, N. Bagkar, R. Ganguly, S.K. Kulshreshtha, Synthesis of superparamagnetic Mn3O4 nanocrystallites by ultrasonic irradiation. J. Cryst. Growth 280, 436–441 (2005)CrossRefGoogle Scholar
  20. 20.
    T.R. Bastami, M.H. Entezari, Sono-synthesis of Mn3O4 nanoparticles in different media without additives. Chem. Eng. J. 164, 261–266 (2010)CrossRefGoogle Scholar
  21. 21.
    J.P. Park, S.K. Kim, J.-Y. Park, C.H. Hwang, C. Myung-ho, E.K. Jee, M.O. Kang, K. Ho-Young, W. Shim-II, Synthesis of Mn3O4 and LiMn2O4 nanoparticles by a simple sonochemical method. Mater. Lett. 63, 2201–2204 (2009)CrossRefGoogle Scholar
  22. 22.
    D. Chen, B. Yang, Y. Jiang, Y.-Z. Zhang, Synthesis of Mn3O4 nanoparticles for catalytic application via ultrasound-assisted ball milling. Chem. Select 3, 3904–3908 (2018)Google Scholar
  23. 23.
    A.B. Pandit, A. Badnore, Effect of pH on sonication assisted synthesis of ZnO nanostructures: process details. Chem. Eng. Process. 122, 235–244 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Ashokkumar, R. Hall, P. Mulvaney, F. Grieser, Sonoluminescence from aqueous alcohol and surfactant solutions. J. Phys. Chem. B 101, 10845–10850 (1997)CrossRefGoogle Scholar
  25. 25.
    S.W. Seo, H.H. Jo, K. Lee, B. Kim, S.J. Oh, T.J. Park, Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chem. 43, 1115–1117 (2004)CrossRefGoogle Scholar
  26. 26.
    X. Hao, J. Zhao, Y. Li, Y. Zhao, D. Ma, L. Li, Mild aqueous synthesis of octahedral Mn3O4 nanocrystals with varied oxidation states. Colloids Surf. A 374, 42–47 (2011)CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringVignan’s Foundation for Science, Technology and Research Vadlamudi (Deemed to be University)GunturIndia
  2. 2.Department of Chemical EngineeringIIT GuwahatiGuwahatiIndia
  3. 3.Department of Petroleum EngineeringKoneru Lakshmaiah Education FoundationVaddeswaramIndia

Personalised recommendations