Merging of Solidus and Liquidus Curves in Copper–Nickel Nanophase Diagram due to Segregation

  • H. R. Aniruddha RamEmail author
  • Krishna Venkatesh
  • K. Gopalakrishna
  • K. T. Kashyap
  • K. S. Sridhar
Original Contribution


Phase diagram was predicted for Cu–Ni nanoalloy system using regular solution considering various models with and without segregation. Phase diagrams for nanoparticles are affected by the melting point of nanoparticles, and various models are available to predict the melting point for nanoparticles. Hence, choosing the right model helps in accurate nanophase diagram predictions. Three models are considered to predict the melting point of nanoparticles and phase diagrams. Thermodynamic model, enthalpy and entropy model and crystal structure models were compared for their melting points and phase diagram predictions. These three models were then compared with experimental results carried out by Sopousek et al. for a 26 nm particle size. It was found that for a 11.1 Wt% Ni nanoalloy, thermodynamic model accurately predicts the phase diagram with an error of 0.09% compared to enthalpy and entropy model. Thermodynamic model is also known as the surface-phonon instability model which considers various factors like surface phonons, atoms and intrinsic defects in the nanoparticle and hence accurately predicts the melting point and the phase diagram. Further segregation effects were also considered, and for the first time, a comparison between three models is reported which shows significant merging of solidus and liquidus curves in thermodynamic model and enthalpy and entropy model using William–Nason’s model.


Copper–nickel Phase diagrams Nanoparticles CALPHAD MATLAB 



The authors thankfully acknowledge the financial support provided by the Institution of Engineers (India) (Project ID RDDR2017014) for carrying out research and development work in this subject. The authors would like to express deepest gratitude to late| Dr. B.N.V.Subrahmanya, Smt. B.V.Seetha, Shri M Narasimhan, Shri B.K.Ramesh, Shri B.V.Venkatasubrahmanya and all the other trustees and management, Principal and HOD (Department of Mechanical Engineering) of Jyothy Charitable trust and CIIRC for their immense support in all aspects. The authors also thank Visvesvaraya Technological University, Belgaum, and the management team and Principal of PES Institute of Technology and Siddaganga Institute of Technology for their assistance.


  1. 1.
    W.A. Jesser, G.J. Shiflet, G.L. Allen, J.L. Crawford, Equilibrium phase diagrams of isolated nano-phases. Mater. Res. Innov. (1999). CrossRefGoogle Scholar
  2. 2.
    N. Saunders, A.P. Miodownik, Evaluation of glass forming ability in binary and ternary metallic alloy systems—an application of thermodynamic phase diagram calculations. Mater. Sci. Technol. (2014). CrossRefGoogle Scholar
  3. 3.
    H.J. Seifert, H.L. Lukas, F. Aldinger, Development of Si–B–C–N ceramics supported by phase diagrams and thermochemistry. Ber. Der Bunsenges. Für Phys. Chem. (2012). CrossRefGoogle Scholar
  4. 4.
    N.A. Pertsev, A.G. Zembilgotov, A.K. Tagantsev, Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. (1998). CrossRefGoogle Scholar
  5. 5.
    R. Klenk, T. Walter, H.W. Schock, D. Cahen, A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation. Adv. Mater. (1993). CrossRefGoogle Scholar
  6. 6.
    G. Inden, The role of magnetism in the calculation of phase diagrams. Phys B+C (1981). CrossRefGoogle Scholar
  7. 7.
    D. Li, L. Liu, Y. Zhang, C. Ye, X. Ren, Y. Yang et al., Phase diagram calculation of high chromium cast irons and influence of its chemical composition. Mater. Des. (2009). CrossRefGoogle Scholar
  8. 8.
    A. San-Miguel, Nanomaterials under high-pressure. Chem. Soc. Rev. (2006). CrossRefGoogle Scholar
  9. 9.
    V. Bobnar, Z. Kutnjak, R. Pirc, A. Levstik, Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate. Phys. Rev. B Condens. Matter Mater. Phys. (1999). CrossRefGoogle Scholar
  10. 10.
    M. Wautelet, On the shape dependence of the melting temperature of small particles. Phys. Lett. Sect. Gen. Solid State Phys. 246, 341–342 (1998). CrossRefGoogle Scholar
  11. 11.
    M. Wautelet, J.P. Dauchot, M. Hecq, On the phase diagram of non-spherical nanoparticles. J. Phys. Condens. Matter (2003). CrossRefGoogle Scholar
  12. 12.
    R. Vallée, M. Wautelet, J.P. Dauchot, M. Hecq, Size and segregation effects on the phase diagrams of nanoparticles of binary systems. Nanotechnology (2001). CrossRefGoogle Scholar
  13. 13.
    M. Wautelet, J.P. Dauchot, M. Hecq, Size effects on the phase diagrams of nanoparticles of various shapes. Mater. Sci. Eng. C (2003). CrossRefGoogle Scholar
  14. 14.
    P.G. Bruce, B. Scrosati, J. Tarascon, Lithium batteries nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. (2008). CrossRefGoogle Scholar
  15. 15.
    X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. (2007). CrossRefGoogle Scholar
  16. 16.
    G. Guisbiers, S. Mejia-Rosales, S. Khanal, F. Ruiz-Zepeda, R.L. Whetten, M. José-Yacaman, Gold-copper nano-alloy, “tumbaga”, in the era of nano: phase diagram and segregation. Nano Lett. (2014). CrossRefGoogle Scholar
  17. 17.
    E. Sutter, P. Sutter, Phase diagram of nanoscale alloy particles used for vapor–liquid–solid growth of semiconductor nanowires. Nano Lett. (2008). CrossRefGoogle Scholar
  18. 18.
    M. Asadikiya, H. Sabarou, M. Chen, Y. Zhong, Phase diagram for a nano-yttria-stabilized zirconia system. RSC Adv. (2016). CrossRefGoogle Scholar
  19. 19.
    T. Ivas, A.N. Grundy, E. Povoden-Karadeniz, L.J. Gauckler, Phase diagram of CeO 2CoO for nano-sized powders. CALPHAD Comput. Coupling Phase Diagr. Thermochem. (2012). CrossRefGoogle Scholar
  20. 20.
    H.L. Lukas, S.G. Fries, B. Sundman, Computational thermodynamics: the CALPHAD method (Cambridge University Press, Cambridge, 2007). CrossRefzbMATHGoogle Scholar
  21. 21.
    Z.K. Liu, First-principles calculations and CALPHAD modeling of thermodynamics. J. Phase Equilibria Diffus. (2009). CrossRefGoogle Scholar
  22. 22.
    B. Sundman, J. Ågren, A regular solution model for phases with several components and sublattices, suitable for computer applications. J. Phys. Chem. Solids (1981). CrossRefGoogle Scholar
  23. 23.
    A. van de Walle, G. Ceder, Automating first-principles phase diagram calculations. J. Phase Equilibria (2002). CrossRefGoogle Scholar
  24. 24.
    G. Ouyang, X. Tan, C.X. Wang, G.W. Yang, Solid solubility limit in alloying nanoparticles. Nanotechnology 1, 2–3 (2006). CrossRefGoogle Scholar
  25. 25.
    M. Cui, H. Lu, H. Jiang, Z. Cao, X. Meng, Phase diagram of continuous binary nanoalloys: size, shape, and segregation effects. Sci. Rep. (2017). CrossRefGoogle Scholar
  26. 26.
    G. Guisbiers, R. Mendoza-Cruz, L. Bazán-Díaz, J.J. Velázquez-Salazar, R. Mendoza-Perez, J.A. Robledo-Torres et al., Electrum, the gold-silver alloy, from the bulk scale to the nanoscale: synthesis, properties, and segregation rules. ACS Nano (2016). CrossRefGoogle Scholar
  27. 27.
    G. Guisbiers, S. Khanal, F. Ruiz-Zepeda, J. Roque De La Puente, M. José-Yacaman, Cu–Ni nano-alloy: mixed, core-shell or Janus nano-particle? Nanoscale 6, 14630–14635 (2014). CrossRefGoogle Scholar
  28. 28.
    S.H. Overbury, P.A. Bertrand, G.A. Somorjai, The surface composition of binary systems. Prediction of surface phase diagrams of solid solutions. Chem. Rev. (1975). CrossRefGoogle Scholar
  29. 29.
    S. an Mey, Thermodynamic re-evaluation of the CuNi system. CALPHAD (1992). CrossRefGoogle Scholar
  30. 30.
    A. Christensen, P. Stoltze, J.K. Norskov, Size dependence of phase separation in small bimetallic clusters. J. Phys. Condens. Matter (1995). CrossRefGoogle Scholar
  31. 31.
    J. Lee, J. Park, T. Tanaka, Effects of interaction parameters and melting points of pure metals on the phase diagrams of the binary alloy nanoparticle systems: a classical approach based on the regular solution model. CALPHAD Comput. Coupling Phase Diagr. Thermochem. (2009). CrossRefGoogle Scholar
  32. 32.
    J. Park, J. Lee, Phase diagram reassessment of Ag–Au system including size effect. CALPHAD Comput. Coupling Phase Diagr. Thermochem. (2008). CrossRefGoogle Scholar
  33. 33.
    M. Wautelet, J.P. Dauchot, M. Hecq, Phase diagrams of small particles of binary systems: a theoretical approach. Nanotechnology (2000). CrossRefGoogle Scholar
  34. 34.
    J. Ross, R.P. Andres, Melting temperature of small clusters. Surf. Sci. (1981). CrossRefGoogle Scholar
  35. 35.
    M. Wautelet, Estimation of the variation of the melting temperature with the size of small particles, on the basis of a surface-phonon instability model. J. Phys. D Appl. Phys. (1991). CrossRefGoogle Scholar
  36. 36.
    P. Puri, V. Yang, Effect of particle size on melting of aluminum at nano scales. J. Phys. Chem. C (2007). CrossRefGoogle Scholar
  37. 37.
    R.J.C. Brown, R.F.C. Brown, Melting point and molecular symmetry. J. Chem. Educ. (2009). CrossRefGoogle Scholar
  38. 38.
    J. Sun, S.L. Simon, The melting behavior of aluminum nanoparticles. Thermochim. Acta (2007). CrossRefGoogle Scholar
  39. 39.
    M. Schmidt, R. Kusche, B. Von Issendorff, H. Haberland, Irregular variations in the melting point of size-selected atomic clusters. Nature (1998). CrossRefGoogle Scholar
  40. 40.
    Q. Jiang, S. Zhang, M. Zhao, Size-dependent melting point of noble metals. Mater. Chem. Phys. (2003). CrossRefGoogle Scholar
  41. 41.
    M. Wautelet, A.S. Shirinyan, Thermodynamics: nano vs. macro. Pure Appl. Chem. (2009). CrossRefGoogle Scholar
  42. 42.
    G. Guisbiers, G. Abudukelimu, Influence of nanomorphology on the melting and catalytic properties of convex polyhedral nanoparticles. J. Nanoparticle Res. (2013). CrossRefGoogle Scholar
  43. 43.
    H.M. Lu, F.Q. Han, X.K. Meng, Size-dependent thermodynamic properties of metallic nanowires. J. Phys. Chem. B. (2008). CrossRefGoogle Scholar
  44. 44.
    K.K. Nanda, S.N. Sahu, S.N. Behera, Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys. Rev. A Mol. Opt. Phys. (2002). CrossRefGoogle Scholar
  45. 45.
    A.S. Shirinyan, M. Wautelet, Phase separation in nanoparticles. Nanotechnology (2004). CrossRefGoogle Scholar
  46. 46.
    Q. Jiang, H.X. Shi, M. Zhao, Melting thermodynamics of organic nanocrystals. J. Chem. Phys. (1999). CrossRefGoogle Scholar
  47. 47.
    G. Guisbiers, L. Buchaillot, Modeling the melting enthalpy of nanomaterials. J. Phys. Chem. C (2009). CrossRefGoogle Scholar
  48. 48.
    M. Singh, S. Lara, S. Tlali, Effects of size and shape on the specific heat, melting entropy and enthalpy of nanomaterials. J. Taibah Univ. Sci. (2016). CrossRefGoogle Scholar
  49. 49.
    W. Qi, Nanoscopic thermodynamics. Acc. Chem. Res. (2016). CrossRefGoogle Scholar
  50. 50.
    L.H. Liang, D. Liu, Q. Jiang, Size-dependent continuous binary solution phase diagram. Nanotechnology (2003). CrossRefGoogle Scholar
  51. 51.
    G. Li, Q. Wang, D. Li, X. Lü, J. He, Size and composition effects on the melting of bimetallic Cu–Ni clusters studied via molecular dynamics simulation. Mater. Chem. Phys. (2009). CrossRefGoogle Scholar
  52. 52.
    H. Liao, A. Fisher, Z.J. Xu, Surface segregation in bimetallic nanoparticles: a critical issue in electrocatalyst engineering. Small (2015). CrossRefGoogle Scholar
  53. 53.
    B.N. Wanjala, J. Luo, B. Fang, D. Mott, C.J. Zhong, Gold-platinum nanoparticles: alloying and phase segregation. J. Mater. Chem. (2011). CrossRefGoogle Scholar
  54. 54.
    L. Deng, W. Hu, H. Deng, S. Xiao, Surface segregation and structural features of bimetallic Au–Pt nanoparticles. J. Phys. Chem. C (2010). CrossRefGoogle Scholar
  55. 55.
    L. Peng, E. Ringe, R.P. Van Duyne, L.D. Marks, Segregation in bimetallic nanoparticles. Phys. Chem. Chem. Phys. (2015). CrossRefGoogle Scholar
  56. 56.
    D.R. Gaskell, Introduction to the thermodynamics of materials (CRC Press, Hoboken, 1994). CrossRefGoogle Scholar
  57. 57.
    J. Sopousek, J. Vrestal, J. Pinkas, P. Broz, J. Bursik, A. Styskalik et al., Cu–Ni nanoalloy phase diagram—prediction and experiment. CALPHAD Comput. Coupling Phase Diagr. Thermochem. (2014). CrossRefGoogle Scholar
  58. 58.
    T.T. Li, C. He, W.X. Zhang, M. Cheng, Structural and melting properties of Cu–Ni clusters: a simulation study. J. Alloys Compd. (2018). CrossRefGoogle Scholar
  59. 59.
    J. Pinkas, J. Sopoušek, P. Brož, V. Vykoukal, J. Buršík, J. Vřešťál, Synthesis, structure, stability and phase diagrams of selected bimetallic silver- and nickel-based nanoparticles. CALPHAD Comput. Coupling Phase Diagr. Thermochem. (2019). CrossRefGoogle Scholar
  60. 60.
    F.L. Williams, D. Nason, Binary alloy surface compositions from bulk alloy thermodynamic data. Surf. Sci. (1974). CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringCIIRC, Jyothy Institute of TechnologyBangaloreIndia
  2. 2.CIIRC, Jyothy Institute of TechnologyBangaloreIndia
  3. 3.Department of Mechanical EngineeringSiddaganga Institute of TechnologyTumakuruIndia
  4. 4.Department of Mechanical EngineeringPES Institute of TechnologyBangaloreIndia

Personalised recommendations