Optimization of Reduction Parameters of Quenched Titaniferous Magnetite Ore by Boiler Grade Coal Using Box–Behnken Design

  • Bitan Kumar Sarkar
  • Maharshi Ghosh DastidarEmail author
  • Rajib Dey
  • Gopes Chandra Das
  • Souryadipta Chowdhury
  • Dhiman Kumar Mahata
Original Contribution


To improve the reducibility of titaniferous magnetite ore (TMO), a technique of high-temperature heating followed by water quenching has been adapted. This quenching technique imparts cracks into the dense TMO which in turn leads to the enhancement of reducibility during carbothermal reduction using boiler grade coal. A major problem associated with TMO is that the reducibility of the ore is very less as compared to haematite owing to its compact dense interlocking structure with polymetallic elements. In this context, a method of effective pre-treatment, i.e., heating at high temperature followed by rapid quenching using water has been used to impart cracks and fissures in the TMO lump to increase the extent of reduction. The quenching parameters, namely quenching temperature (1323, 1373 and 1423 K), quenching time (5, 10 and 15 min) and number of quenching (1, 2 and 3), have been optimized using Box–Behnken design (3-factors, 3-levels) with extent of reduction as the response. A maximum extent of reduction of 81.57% has been achieved at the following optimized conditions: quenching temperature—1373 K, quenching time—15 min and number of quenching—3. Under the identical conditions of reduction for untreated TMO, the extent of reduction is only 56.6%. This confirms the novelty of the repeated heating and quenching process of TMO prior to reduction.


Titaniferous magnetite ore Quenching Boiler grade coal Box–Behnken design Carbothermal reduction Optimization 



  1. 1.
    B.K. Sarkar, S. Samanta, R. Dey, G.C. Das, Bitan Kumar, A study on reduction kinetics of titaniferous magnetite ore using lean grade coal. Int. J. Miner. Process. 152, 36–45 (2016)CrossRefGoogle Scholar
  2. 2.
    R.P. Fischer, Vanadium Resources in Titaniferous Magnetite DepositsGoogle Scholar
  3. 3.
    G.M. Chowdhury, G.G. Roy, S.K. Roy, Reduction kinetics of iron ore–graphite composite pellets in a packed bed reactor under inert and reactive atmospheres. Metall. Mater. Trans. B 39, 160–178 (2008)CrossRefGoogle Scholar
  4. 4.
    M. Geerdes, R. Chaigneau, I. Kurunov, Modern Blast Furnace Ironmaking: An Introduction, vol. 39, 3rd edn. (IOS Press, Amsterdam, 2015)Google Scholar
  5. 5.
    B. Mohapatra, D. Patra, M. Kumar, Study of reduction behaviour of iron ore lumps, thesis, 2009Google Scholar
  6. 6.
    C.E. Seaston, J.S. Foster, J. Velasco, Reduction kinetics of hematite and magnetite pellets containing coal char. Trans. ISI Jpn. 23, 490–496 (1983)CrossRefGoogle Scholar
  7. 7.
    S. Watanabe, M. Yoshinaga, The abnormal behavior of some ore constituents and their effects on blast furnace operation. Trans. Soc. Min. Eng. 241, 1–15 (1968)Google Scholar
  8. 8.
    H.A. Nick, H. Kister, R.B. Vogel, K.H. van Toor, Low temperature degradation of pellets and the effect on blast furnace performance. Soc. Min. Eng. AIME 260, 263–267 (1976)Google Scholar
  9. 9.
    J.S. Padan, O. Singh, K.N. Gupta, Decrepitation behaviour of Lohara iron ore from Maharashta. NML Tech. J. 20, 35–36 (1978)Google Scholar
  10. 10.
    M. Naito, A. Okamoto, K. Nakamura, K. Yamaguchi, Reduction behavior of lump iron ore in blast furnace. s.l.: Nippon Steel, 1990Google Scholar
  11. 11.
    S.S. Gupta, N. Bikash, Cracking Behaviour of Sinter and Iron Ores in Reducing Atmospheres (Tata Search, Jamshedpur, 2002)Google Scholar
  12. 12.
    S.L. Wu, H.F. Xu, Y.Q. Tian, Evaluatuion of lump ores for use in modern blast furnaces as part of mixed burden practice. Ironmak. Steelmak. 36, 19–23 (2009)CrossRefGoogle Scholar
  13. 13.
    S. Wu, X. Lui, Q. Zhuo, J. Xu, C. Lui, Low temperature reduction degradation characteristics of sinter, pellet and lump ore. J. Iron Steel Res. 18, 20–24 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Judah, B. Muwanguzi, Investigating the parameters that influence the behaviour of natural iron ores during the iron production process, Doctoral thesis, Stockholm, 2013Google Scholar
  15. 15.
    V.A. Reznichenko, A.A. Palant, V.I. Solov’ev, Integrated Use of Raw Materials in the Technology of Refractory Metals (Nauka, Moscow, 1988). (in Russian) Google Scholar
  16. 16.
    L.I. Leont’ev, N.A. Vatolin, S.V. Shavrin et al., Pyrometallurgical Processing of Complex Ores (Metallurgiya, Moscow, 1997). (in Russian) Google Scholar
  17. 17.
    D. Chen, B. Song, L.N. Wang, T. Qi, Y. Wang, W.J. Wang, Solid state reduction of Panzhihua titanomagnetite concentrates with pulverized coal. Miner. Eng. 24, 864–869 (2011)CrossRefGoogle Scholar
  18. 18.
    L.H. Zhou, D.P. Tao, M.X. Fang, F.H. Zeng, X. Pu, Carbothermic reduction of V–Ti magnetite ore. Chin. J. Rare Metals 33, 406–410 (2009)Google Scholar
  19. 19.
    S.Q. Kang, Sinter. Pelletizing 4, 15–19 (1989)Google Scholar
  20. 20.
    X. Xue, Research on direct reduction of vanadic tianomagetite. Iron Steel Vanadium Titan. 28, 37–41 (2007)Google Scholar
  21. 21.
    T. Hu, X.W. Lv, C.G. Bai, Z.G. Lun, G.B. Qiu, Reduction behaviour of Panzhihua titanomagnetite concentrates with coal. Metall. Mater. Trans. B 44, 252 (2013)CrossRefGoogle Scholar
  22. 22.
    X.G. Si, X.G. Lu, C.W. Li, C.H. Li, W.Z. Ding, Phase transformation and reduction kinetics during the hydrogen reduction of ilmenite concentrate. Int. J. Miner. Metall. Mater. 19(5), 384 (2012)CrossRefGoogle Scholar
  23. 23.
    E. Hukkanen, H. Walden, The production of vanadium and steel from titanomagnetites. Int. J. Miner. Process. 15, 89 (1985)CrossRefGoogle Scholar
  24. 24.
    G. Gabra, I. Malinsky, A comparative study of the extraction of vanadium from titaniferous magnetites and slags, in Symposium on Proceedings of Extractive Metallurgy of Refractory Metals (The Metallurgical Society of AIME, 1981), p. 167Google Scholar
  25. 25.
    P.S. Banerjee, P.J. Roychoudhury, Beneficiation studies on vanadiferrous titanomagnetites. J. Mines Metals Fuels 11, 143 (1992)Google Scholar
  26. 26.
    R.H. Nafziger, R.R. Gordan, Prereduction and melting of domestic titaniferous materials. Metall. Trans. B 14, 55–62 (1983)CrossRefGoogle Scholar
  27. 27.
    V.E. Roshchin, A.V. Asanov, A.V. Roshchin, Possibilities of two-stage processing of titaniferous magnetite ore concentrates. Russ. Metall. (Metally) 2011, 499–508 (2011)CrossRefGoogle Scholar
  28. 28.
    A.V. Roshchin, N.V. Mal’kov, V.E. Roshchin, Estimation of the possibility of pyrometallurgical separation of the components of titaniferous magnetite ores Electrometallurgiya 8, 23–28 (2006)Google Scholar
  29. 29.
    M.M. Manamela, P.C. Pistorius, Ore size does affect direct reduction of titaniferous magnetite. J. S. Afr. Inst. Min. Metall. 105, 183–186 (2005)Google Scholar
  30. 30.
    V.E. Roshchin, A.V. Asanov, A.V. Roshchin, Solid-phase prereduction of iron–vanadium concentrates and liquid phase separation of the products of their reduction. Russ. Metall. (Metally) 2010, 1001–1008 (2010)CrossRefGoogle Scholar
  31. 31.
    S. Chen, M. Chu, Metalizingreduction and magnetic separation of vanadium titano-magnetite based on hot briquetting. Int. J. Miner. Metall. Mater. 21, 225 (2014)CrossRefGoogle Scholar
  32. 32.
    S.H.A. Rahman, J.P. Choudhury, A.L. Ahmad, A.H. Kamaruddin, Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresour. Technol. 98, 554–559 (2007)CrossRefGoogle Scholar
  33. 33.
    P. Qiu, M. Cui, K. Kang, B. Park, Y. Son, E. Khim, M. Jang, J. Khim, Application of Box–Behnken design with response surface methodology for modelling and optimizing ultrasonic oxidation of arsenite with H2O2. Cent. Eur. J. Chem. 12, 164–172 (2014)CrossRefGoogle Scholar
  34. 34.
    M.I. Sabela, S. Kanchi, B. Ayyappa, K. Bisetty, A Box–Behnken design and response surface approach for the simultaneous determination of chromium (III) and (VI) using catalytic differential pulse polarography. Int. J. Electrochem. Sci. 9, 6751–6764 (2014)Google Scholar
  35. 35.
    M.A. Tekindal, H. Bayrak, B. Ozkaya, Y. Genc, Box–Behnken experimental design in factorial experiments: the importance of bread for nutrition and health. Turk. J. Field Crops 17, 115–123 (2012)Google Scholar
  36. 36.
    O. Perincek, M. Colak, Use of experimental Box–Behnken design for the estimation of interactions between harmonic currents produced by single phase loads. Int. J. Eng. Res. Appl. 3, 158–165 (2013)Google Scholar
  37. 37.
    N. Aslan, Y. Cebeci, Application of Box–Behnken design and response surface methodology for modeling of some Turkish coals. Fuel 86, 90–97 (2007)CrossRefGoogle Scholar
  38. 38.
    Y.-D. Chen, W.-Q. Chen, B. Huang, M.-J. Huang, Process optimization of K2C2O4-activated carbon from kenaf core using Box–Behnken design. Chem. Eng. Res. 91, 1783–1789 (2013)CrossRefGoogle Scholar
  39. 39.
    A.S. Souza, W.N.L. dos Santos, S.L.C. Ferreira, Application of Box–Behnken design in the optimization of an on-line pre-concentration system using knotted reactor for cadmium determination by flame atomic absorption spectrometry. Spectrochim. Acta Part B 609, 737–742 (2005)CrossRefGoogle Scholar
  40. 40.
    N.V. Patel, J.K. Patel, S.H. Shah, Box–Behnken experimental design in the development of pectin-compritol ATO 888 compression coated colon targeted drug delivery of mesalamine. Acta Pharm. 60, 39–54 (2010)CrossRefGoogle Scholar
  41. 41.
    S.A. Pasma, R. Daik, M.Y. Maskat, O. Hassan, Application of Box–Behnken design in optimization of glucose production from oil palm empty fruit bunch cellulose. Int. J. Polym. Sci. 2013, 8 (2013)CrossRefGoogle Scholar
  42. 42.
    C.-H. Dong, X.-Q. Xie, X.-L. Wang, Y. Zhan, Y.-J. Yao, Application of Box–Behnken design in optimization for polysaccharides extraction from cultured mycelium of Cordycepssinensis. Food Bioprod. Process. 87(2), 139–144 (2009)CrossRefGoogle Scholar
  43. 43.
    S.N. Azizi, N. Asemi, A Box–Behnken design for determining the optimum experimental condition of the fungicide (Vapam) sorption onto soil modified with perlite. J. Environ. Sci. Health B 47, 692 (2012)CrossRefGoogle Scholar
  44. 44.
    M. Manohar, J. Joseph, T. Selvaraj, D. Sivakumar, Application of Box Behnken design to optimize the parameters for turning Inconel 718 using coated carbide tools. Int. J. Sci. Eng. Res. 4, 620 (2013)Google Scholar
  45. 45.
    B. Nikrooz, M. Zandrahimi, Optimization of process variables and corrosion properties of a multi layer silica sol gel coating on AZ91D using the Box–Behnken design. J. Sol Gel Sci. Technol. 59, 640–649 (2011)CrossRefGoogle Scholar
  46. 46.
    L. Wu, K. Yick, S. Ng, J. Yip, Application of the Box–Behnken design to the optimization of process parameters in foam cup molding. Expert Syst. Appl. 39, 7585–8504 (2012)CrossRefGoogle Scholar
  47. 47.
    V.N. Gaitonde, S.R. Karnik, B. Siddeswarappa, B.T. Achyutha, Integrating Box–Behnken design with genetic algorithm to determine the optimal parametric combination for minimizing burr size in drilling of AISI 316L stainless steel. Int. J. Adv. Manuf. Technol. 37, 230–240 (2008)CrossRefGoogle Scholar
  48. 48.
    M. Cavazzuti, Optimization Methods: From Theory to Design (Scientific and Technological Aspects in Mechanics, Springer, Berlin, 2012)zbMATHGoogle Scholar
  49. 49.
    N. Nguyena, J.J. Borkowskib, New 3-level response surface designs constructed from incomplete block designs. J. Stat. Plan. Inference 138, 294–305 (2008)MathSciNetCrossRefGoogle Scholar
  50. 50.
    N.R. Draper, H. Smith, Applied Regression Analysis (Wiley, New York, 1981)zbMATHGoogle Scholar
  51. 51.
    G.E.P. Box, D.W. Behnken, Some new three level designs for the study of quantitative variables. Technometrics 2, 455–475 (1960)MathSciNetCrossRefGoogle Scholar
  52. 52.
    D.C. Montgomery, Design and Analysis of Experiments, 8th edn. (Wiley, New Delhi, 2011)Google Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  • Bitan Kumar Sarkar
    • 1
  • Maharshi Ghosh Dastidar
    • 1
    Email author
  • Rajib Dey
    • 1
  • Gopes Chandra Das
    • 1
  • Souryadipta Chowdhury
    • 1
  • Dhiman Kumar Mahata
    • 1
  1. 1.Department of Metallurgical and Material EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations