Effect of Sintering Parameters on Mechanical Properties of 17-Cr Ferritic ODS Steel Through Taguchi Approach

  • G. DharmalingamEmail author
  • R. Mariappan
  • Arun Prasad Murali
Original Contribution


Ferritic oxide dispersion-strengthened (ODS) steels containing Fe–17Cr–0.89Mn–0.89Si–0.25Y2O3–1.5ZrO2–3Al (wt%) was prepared through mechanical alloying, and X-ray diffractogram was used to analyze crystallite size for different time intervals during milling. Milled powders were consolidated at three different temperatures 1050 °C, 1100 °C and 1170 °C at three different pressure levels of 30, 40 and 60 MPa at different cooling rates 5 °C/min, 25 °C/min, 50 °C/min. Optimization of three parameters, namely sintering pressure, sintering temperature and rate of cooling, was done in this current study through design of experiments. Analysis of variance technique inclusive of signal-to-noise ratio was employed to optimize the processing parameters through L9 orthogonal array which predicts the response variable like density, tensile strength and hardness in the present study. Density and mechanical properties of powder metallurgy component are governed by sintering parameters. From the results, it is observed that in sintering pressure increases the mechanical properties and density. Samples sintered at 1170 °C with the pressure level of 60 MPa and rate of cooling 50 °C/min exhibit higher sintered density, hardness and tensile strength than the other sintered conditions. Sintering pressure is the most prevailing factor followed by the vacuum hot pressing inducing density and mechanical properties. Analysis of variance and Taguchi method were used to find the optimum parameters for attaining the superior mechanical properties of the 17Cr ferritic ODS steel.


Ferritic oxide dispersion-strengthened (ODS) steel Crystallite size ANOVA Vacuum hot pressing Regression analysis 



The authors would like to thank Vel Tech Rangarajan Dr Sagunthala R and D Institute of Science and Technology, Chennai, India for providing the research facilities. The Authors also would like to express sincere thanks to Department of Science and Technology (No. 457 DST/TSG/NTS/2013/03-G) for providing the funding for the project under the scheme of Technology System Development. The authors also acknowledges M/s SANDVIK for supplying 430 L ferritic stainless steel powder.


  1. 1.
    R. Klueh, K. Ehrlich, F. Abe, Ferritic/martensitic steels: promises and problems. J. Nucl. Mater. 191, 116–124 (1992)Google Scholar
  2. 2.
    H.Y. Kim, O.Y. Kwon, J. Jang, S.H. Hong, Modification of anisotropic mechanical properties in recrystallized oxide dispersion strengthened ferritic alloy. Scr. Mater. 54(9), 1703–1707 (2006)CrossRefGoogle Scholar
  3. 3.
    J. Henry, X. Averty, Y. Dai, J. Pizzanelli, J. Espinas, Tensile properties of ODS-14% Cr ferritic alloy irradiated in a spallation environment. J. Nucl. Mater. 386, 345–348 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Alamo, V. Lambard, X. Averty, M. Mathon, Assessment of ODS-14% Cr ferritic alloy for high temperature applications. J. Nucl. Mater. 329, 333–337 (2004)CrossRefGoogle Scholar
  5. 5.
    S. Noh, R. Kasada, A. Kimura, S.H.C. Park, S. Hirano, Microstructure and mechanical properties of friction stir processed ODS ferritic steels. J. Nucl. Mater. 417(1–3), 245–248 (2011)CrossRefGoogle Scholar
  6. 6.
    D.A. McClintock, M.A. Sokolov, D.T. Hoelzer, R.K. Nanstad, Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. J. Nucl. Mater. 392(2), 353–359 (2009)CrossRefGoogle Scholar
  7. 7.
    L. Guo, C. Jia, B. Hu, H. Li, Microstructure and mechanical properties of an oxide dispersion strengthened ferritic steel by a new fabrication route. Mater. Sci. Eng. A 527(20), 5220–5224 (2010)CrossRefGoogle Scholar
  8. 8.
    K. Asano, Y. Kohno, A. Kohyama, T. Suzuki, H. Kusanagi, Microstructural evolution of an oxide dispersion strengthened steel under charged particle irradiation. J. Nucl. Mater. 155, 928–934 (1988)CrossRefGoogle Scholar
  9. 9.
    M. Li, Z. Zhou, P. He, L. Liao, Y. Xu, C. Ge, Microstructure and mechanical property of 12Cr oxide dispersion strengthened ferritic steel for fusion application. Fusion Eng. Des. 85(7–9), 1573–1576 (2010)CrossRefGoogle Scholar
  10. 10.
    P. He, M. Klimenkov, R. Lindau, A. Möslang, Characterization of precipitates in nano structured 14% Cr ODS alloys for fusion application. J. Nucl. Mater. 428(1–3), 131–138 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Miller, D. Hoelzer, E. Kenik, K. Russell, Stability of ferritic MA/ODS alloys at high temperatures. Intermetallics 13(3–4), 387–392 (2005)CrossRefGoogle Scholar
  12. 12.
    T. Liu, C. Wang, H. Shen, W. Chou, N.Y. Iwata, A. Kimura, The effects of Cr and Al concentrations on the oxidation behavior of oxide dispersion strengthened ferritic alloys. Corros. Sci. 76, 310–316 (2013)CrossRefGoogle Scholar
  13. 13.
    G. Pintsuk, Z. Oksiuta, J. Linke, N. Baluc, High heat flux testing of 12–14Cr ODS ferritic steels. J. Nucl. Mater. 396(1), 20–25 (2010)CrossRefGoogle Scholar
  14. 14.
    A. Karch, D. Sornin, F. Barcelo, S. Bosonnet, Y. De Carlan, R. Logé, Microstructural characterizations of 14Cr ODS ferritic steels subjected to hot torsion. J. Nucl. Mater. 459, 53–61 (2015)CrossRefGoogle Scholar
  15. 15.
    P. Susila, D. Sturm, M. Heilmaier, B. Murty, V.S. Sarma, Effect of yttria particle size on the microstructure and compression creep properties of nanostructured oxide dispersion strengthened ferritic (Fe–12Cr–2W–0.5Y2O3) alloy. Mater. Sci. Eng. A 528(13–14), 4579–4584 (2011)CrossRefGoogle Scholar
  16. 16.
    Z. Oksiuta, A. Ozieblo, K. Perkowski, M. Osuchowski, M. Lewandowska, Influence of HIP pressure on tensile properties of a 14Cr ODS ferritic steel. Fusion Eng. Des. 89(2), 137–141 (2014)CrossRefGoogle Scholar
  17. 17.
    H. Sandim, R. Renzetti, A. Padilha, D. Raabe, M. Klimenkov, R. Lindau, A. Möslang, Annealing behavior of ferritic–martensitic 9% Cr–ODS–Eurofer steel. Mater. Sci. Eng. A 527(15), 3602–3608 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Macías-Delgado, T. Leguey, V. De Castro, M. Auger, M. Monge, P. Spätig, N. Baluc, R. Pareja, Microstructure and tensile properties of ODS ferritic steels mechanically alloyed with Fe2Y. Nucl. Mater. Energy 9, 372–377 (2016)CrossRefGoogle Scholar
  19. 19.
    H. Sakasegawa, L. Chaffron, F. Legendre, M. Brocq, L. Boulanger, S. Poissonnet, Y. De Carlan, J. Bechade, T. Cozzika, J. Malaplate, Evaluation of threshold stress of the MA957 ODS ferrtic alloy. J. Nucl. Mater. 386, 511–514 (2009)CrossRefGoogle Scholar
  20. 20.
    Z. Oksiuta, E. Och, Corrosion resistance of mechanically alloyed 14% Cr ODS ferritic steel. Acta Mech. Autom. 7(1), 38–41 (2013)Google Scholar
  21. 21.
    L.L. Hsiung, M.J. Fluss, S.J. Tumey, B.W. Choi, Y. Serruys, F. Willaime, A. Kimura, Formation mechanism and the role of nanoparticles in Fe–Cr ODS steels developed for radiation tolerance. Phys. Rev. B 82(18), 184103 (2010)CrossRefGoogle Scholar
  22. 22.
    G. Sundararajan, R. Vijay, A. Reddy, Development of 9Cr ferritic-martensitic and 18Cr ferritic oxide dispersion strengthened steels. Curr. Sci. 105(8), 1100–1106 (2013)Google Scholar
  23. 23.
    Y. Xia, X. Wang, Z. Zhuang, Q. Sun, T. Zhang, Q. Fang, T. Hao, C. Liu, Microstructure and oxidation properties of 16Cr–5Al–ODS steel prepared by sol–gel and spark plasma sintering methods. J. Nucl. Mater. 432(1–3), 198–204 (2013)CrossRefGoogle Scholar
  24. 24.
    A. Yabuuchi, M. Maekawa, A. Kawasuso, Influence of oversized elements (Hf, Zr, Ti and Nb) on the thermal stability of vacancies in type 316 L stainless steels. J. Nucl. Mater. 430(1–3), 190–193 (2012)CrossRefGoogle Scholar
  25. 25.
    A. García-Junceda, N. García-Rodríguez, M. Campos, M. Cartón-Cordero, J.M. Torralba, Effect of zirconium on the microstructure and mechanical properties of an Al-alloyed ODS steel consolidated by FAHP. J. Am. Ceram. Soc. 98(11), 3582–3587 (2015)CrossRefGoogle Scholar
  26. 26.
    R. Gao, T. Zhang, X. Wang, Q. Fang, C. Liu, Effect of zirconium addition on the microstructure and mechanical properties of ODS ferritic steels containing aluminum. J. Nucl. Mater. 444(1–3), 462–468 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Karak, J.D. Majumdar, Z. Witczak, W. Lojkowski, I. Manna, Microstructure and mechanical properties of nano-Y2O3 dispersed ferritic alloys synthesized by mechanical alloying and consolidated by hydrostatic extrusion. Mater. Sci. Eng. A 580, 231–241 (2013)CrossRefGoogle Scholar
  28. 28.
    A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C. Zhang, J. Isselin, P. Dou, J. Lee, N. Muthukumar, T. Okuda, Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems. J. Nucl. Mater. 417(1–3), 176–179 (2011)CrossRefGoogle Scholar
  29. 29.
    C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Sci. 46(1–2), 1–184 (2001)CrossRefGoogle Scholar
  30. 30.
    C. Suryanarayana, E. Ivanov, V. Boldyrev, The science and technology of mechanical alloying. Mater. Sci. Eng. A 304, 151–158 (2001)CrossRefGoogle Scholar
  31. 31.
    S. Karak, T. Chudoba, Z. Witczak, W. Lojkowski, I. Manna, Development of ultra high strength nano-Y2O3 dispersed ferritic steel by mechanical alloying and hot isostatic pressing. Mater. Sci. Eng. A 528(25–26), 7475–7483 (2011)CrossRefGoogle Scholar
  32. 32.
    S.K. Karak, J.D. Majumdar, Z. Witczak, W. Lojkowski, Ł. Ciupiński, K. Kurzydłowski, I. Manna, Evaluation of microstructure and mechanical properties of nano-Y2O3-dispersed ferritic alloy synthesized by mechanical alloying and consolidated by high-pressure sintering. Metall. Mater. Trans. A 44(6), 2884–2894 (2013)CrossRefGoogle Scholar
  33. 33.
    Q. Zhao, L. Yu, Y. Liu, H. Li, Morphology and structure evolution of Y2O3 nanoparticles in ODS steel powders during mechanical alloying and annealing. Adv. Powder Technol. 26(6), 1578–1582 (2015)CrossRefGoogle Scholar
  34. 34.
    S. Datta, A. Bandyopadhyay, P.K. Pal, Grey-based Taguchi method for optimization of bead geometry in submerged arc bead-on-plate welding. Int. J. Adv. Manuf. Technol. 39(11–12), 1136–1143 (2008)CrossRefGoogle Scholar
  35. 35.
    Z. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater. Sci. 41(3), 763–777 (2006)CrossRefGoogle Scholar
  36. 36.
    D. Ahmadkhaniha, M.H. Sohi, A. Zarei-Hanzaki, S. Bayazid, M. Saba, Taguchi optimization of process parameters in friction stir processing of pure Mg. J. Magnes. Alloys 3(2), 168–172 (2015)CrossRefGoogle Scholar
  37. 37.
    M. Yousefieh, M. Shamanian, A. Saatchi, Optimization of experimental conditions of the pulsed current GTAW parameters for mechanical properties of SDSS UNS S32760 welds based on the Taguchi design method. J. Mater. Eng. Perform. 21(9), 1978–1988 (2012)CrossRefGoogle Scholar
  38. 38.
    M. Yousefieh, M. Shamanian, A. Arghavan, Analysis of design of experiments methodology for optimization of pulsed current GTAW process parameters for ultimate tensile strength of UNS S32760 welds. Metall. Microstruct. Anal. 1(2), 85–91 (2012)CrossRefGoogle Scholar
  39. 39.
    E. Hall, The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Sect. B 64(9), 747 (1951)CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  • G. Dharmalingam
    • 1
    Email author
  • R. Mariappan
    • 1
  • Arun Prasad Murali
    • 1
  1. 1.Department of Mechanical EngineeringVel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and TechnologyChennaiIndia

Personalised recommendations