Advertisement

Investigation of Thermal Performance of Cylindrical Heat Pipe Using Silver Nanofluid. Part I: Experimental Evaluation

  • N. K. ChavdaEmail author
Original Contribution
  • 42 Downloads

Abstract

Cylindrical heat pipes are widely used in various applications to transfer the heat effectively and efficiently. Besides parameters of heat pipe, its thermal performance mainly depends on the characteristics of working fluid also. Recently, various nanofluids have been considered as the most promising working fluid in different heat transfer applications. In the present paper thermal performance of cylindrical heat pipe using silver nanofluid as working fluid has been experimentally evaluated. Extensive experiments have been performed on cylindrical copper heat pipe having two-layer screen mesh filled with silver nanofluid in filling ratio of 40% with a vacuum of 10−3 torr. The thermal performance of heat pipe has been evaluated in terms of thermal resistance, thermal conductivity and overall heat transfer coefficient by varying parameters such as size of nanoparticle, concentration of nanoparticle, angle of inclination of heat pipe, heat load on heat pipe, average evaporator temperature and average condenser temperature to propose the best combination of parameters. The results indicate that the cylindrical heat pipe kept at 45° inclination angle and filled with silver nanofluid of 35 nm size of silver nanoparticle in 0.3% volume concentration yields higher thermal performance when it is operated at 120–140 W heat input. Thus, the cylindrical heat pipe under study is suitable for applications which require operation of heat pipe at some angles, such as cooling of high-wattage LED street lights.

Keywords

Cylindrical heat pipe Silver nanofluid Thermal resistance Thermal conductivity Overall heat transfer coefficient 

Notes

References

  1. 1.
    S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in Developments and Applications of Non-Newtonian Flows, ed. by D.A. Siginer, H.P. Wang (ASME, New York, 1995), pp. 99–105Google Scholar
  2. 2.
    H. T. Chien, C. Y. Tsai, P. H. Chen, P. Y. Chen, Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid, in Proceedings of the Fifth International Conference on Electronic Packaging Tech. (IEEE, Shanghai, China, 2003), pp. 389–391Google Scholar
  3. 3.
    H. Hassan, S. Harmand, Study of the parameters and characteristics of flat heat pipe with nanofluids subjected to periodic heat load on its performance. Int. J. Therm. Sci. 97, 126–142 (2015)Google Scholar
  4. 4.
    M. Ghanbarpour, N. Nikkam, R. Khodabandeh, M.S. Toprak, M. Muhammed, Thermal performance of screen mesh heat pipe with Al2O3 nanofluid. Exp. Thermal Fluid Sci. 66, 213–220 (2015)Google Scholar
  5. 5.
    H. Hassan, S. Harmand, Effect of using nanofluids on the performance of rotating heat pipe. Appl. Math. Model. 39(15), 4445–4462 (2015)MathSciNetGoogle Scholar
  6. 6.
    M.I. Hassan, I.A. Alzarooni, Y. Shatilla, The effect of water-based nanofluid incorporating Al2O3 nanoparticles on heat pipe performance. Energy Procedia 75, 3201–3206 (2015)Google Scholar
  7. 7.
    T. Menlik, A. Sözen, M. Gürü, S. Öztaş, Heat transfer enhancement using MgO/water nanofluid in heat pipe. J. Energy Inst. 88(3), 247–257 (2015).  https://doi.org/10.1016/j.joei.2014.10.001 CrossRefGoogle Scholar
  8. 8.
    M. Ghanbarpour, R. Khodabandeh, Entropy generation analysis of cylindrical heat pipe using nanofluid. Thermochim. Acta 610, 37–46 (2015)Google Scholar
  9. 9.
    P.R. Mashaei, M. Shahryari, Effect of nanofluid on thermal performance of heat pipe with two evaporators; application to satellite equipment cooling. Acta Astronaut. 111, 345–355 (2015)Google Scholar
  10. 10.
    M.M. Sarafraz, F. Hormozi, Experimental study on the thermal performance and efficiency of a copper made thermosyphon heat pipe charged with alumina–glycol based nanofluids. Powder Technol. 266, 378–387 (2014)Google Scholar
  11. 11.
    N. Putra, R. Saleh, W.N. Septiadi, A. Okta, Z. Hamid, Thermal performance of biomaterial wick loop heat pipes with water-base Al2O3 nanofluids. Int. J. Therm. Sci. 76, 128–136 (2014)Google Scholar
  12. 12.
    P. Gunnasegaran, M.Z. Abdullah, M.Z. Yusoff, Effect of Al2O3–H2O nanofluid concentration on heat transfer in a loop heat pipe. Procedia Mater. Sci. 5, 137–146 (2014)Google Scholar
  13. 13.
    T. Yousefi, S.A. Mousavi, B. Farahbakhsh, M.Z. Saghir, Experimental investigation on performance of CPU coolers: effect of heat pipe inclination angle and use of nanofluids. Microelectron. Reliab. 53(12), 1954–1961 (2014)Google Scholar
  14. 14.
    J. Zhang, Y.H. Diao, Y.H. Zhao, X. Tang, W.J. Yu, S. Wang, Experimental study on the heat recovery characteristics of a new-type flat micro-heat pipe array heat exchanger using nanofluid. Energy Convers. Manag. 75, 609–616 (2013)Google Scholar
  15. 15.
    Y.-H. Hung, T.-P. Teng, B.-G. Lin, Evaluation of the thermal performance of a heat pipe using alumina nanofluids. Exp. Therm. Fluid Sci. 44, 504–511 (2013)Google Scholar
  16. 16.
    M.K. Moraveji, S. Razvarz, Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance. Int. Commun. Heat Mass Transf. 39(9), 1444–1448 (2012)Google Scholar
  17. 17.
    N. Putra, W.N. Septiadi, H. Rahman, R. Irwansyah, Thermal performance of screen mesh wick heat pipes with nanofluids. Exp. Therm. Fluid Sci 40, 10–17 (2012)Google Scholar
  18. 18.
    K. Alizad, K. Vafai, M. Shafahi, Thermal performance and operational attributes of the startup characteristics of flat-shaped heat pipes using nanofluids. Int. J. Heat Mass Transf. 55(1–3), 140–155 (2012)zbMATHGoogle Scholar
  19. 19.
    Q. Jian, W. Huiying, Thermal performance comparison of oscillating heat pipes with SiO2/water and Al2O3/water nanofluids. Int. J. Therm. Sci. 50(10), 1954–1962 (2011)Google Scholar
  20. 20.
    Y. Ji, H. Ma, S. Fengmin, G. Wang, Particle size effect on heat transfer performance in an oscillating heat pipe. Exp. Thermal Fluid Sci. 35(4), 724–727 (2011)Google Scholar
  21. 21.
    M.G. Mousa, Effect of nanofluid concentration on the performance of circular heat pipe. Ain Shams Eng J 2(1), 63–69 (2011)Google Scholar
  22. 22.
    K.H. Do, H.J. Ha, S.P. Jang, Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluid. Int. J. Heat Mass Transf 53(25–26), 5888–5894 (2010)Google Scholar
  23. 23.
    T.-P. Teng, H.-G. Hsu, H.-E. Mo, C.-C. Chen, Thermal efficiency of heat pipe with alumina nanofluid. J. Alloys Compd. 504(Supplement 1), S380–S384 (2010)Google Scholar
  24. 24.
    Q. Jian, W. Hui-ying, P. Cheng, Thermal performance of an oscillating heat pipe with Al2O3–water nanofluids. Int. Commun. Heat Mass Transf. 37(2), 111–115 (2010)Google Scholar
  25. 25.
    M. Shafahi, V. Bianco, K. Vafai, O. Manca, An investigation of the thermal performance of cylindrical heat pipes using nanofluids. Int. J. Heat Mass Transf. 53(1–3), 376–383 (2010)zbMATHGoogle Scholar
  26. 26.
    R. Sureshkumar, S.T. Mohideen, N. Nethaji, Heat transfer characteristics of nanofluids in heat pipes: a review. Renew. Sustain. Energy Rev. 20, 397–410 (2013)Google Scholar
  27. 27.
    S. Venkatachalapathy, G. Kumaresan, S. Suresh, Performance analysis of cylindrical heat pipe using nanofluids—an experimental study. Int. J. Multiph. Flow 72, 188–197 (2015)Google Scholar
  28. 28.
    G. Kumaresan, S. Venkatachalapathy, L.G. Asirvatham, S. Wongwises, Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids. Int. Commun. Heat Mass Transf. 57, 208–215 (2014)Google Scholar
  29. 29.
    G. Kumaresan, S. Venkatachalapathy, L.G. Asirvatham, Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids. Int. J. Heat Mass Transf. 72, 507–516 (2014)Google Scholar
  30. 30.
    P.-Y. Wang, X.-J. Chen, Z.-H. Liu, Y.-P. Liu, Application of nanofluid in an inclined mesh wicked heat pipes. Thermochim. Acta 539, 100–108 (2012)Google Scholar
  31. 31.
    R. Senthilkumar, S. Vaidyanathan, B. Sivaraman, Effect of inclination angle in heat pipe performance using copper nanofluid. Procedia Eng. 38, 3715–3721 (2012)Google Scholar
  32. 32.
    Z.H. Liu, Q.Z. Zhu, Application of aqueous nanofluids in a horizontal mesh heat pipe. Energy Convers. Manag. 52(1), 292–300 (2011)Google Scholar
  33. 33.
    G.-S. Wang, B. Song, Z.-H. Liu, Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids. Exp. Therm. Fluid Sci. 34(8), 1415–1421 (2010)Google Scholar
  34. 34.
    Z.-H. Liu, Y.-Y. Li, R. Bao, Thermal performance of inclined grooved heat pipes using nanofluids. Int. J. Therm. Sci. 49, 1680–1687 (2010)Google Scholar
  35. 35.
    M. Ghanbarpour, N. Nikkam, R. Khodabandeh, M.S. Toprak, Thermal performance of inclined screen mesh heat pipes using silver nanofluids. Int. Commun. Heat Mass Transfer 67, 14–20 (2015)Google Scholar
  36. 36.
    M.M. Sarafraz, F. Hormozi, S.M. Peyghambarzadeh, Thermal performance and efficiency of a thermosyphon heat pipe working with a biologically ecofriendly nanofluid. Int. Commun. Heat Mass Transfer 57, 297–303 (2014)Google Scholar
  37. 37.
    V.K. Karthikeyan, K. Ramachandran, B.C. Pillai, A.B. Solomon, Effect of nanofluids on thermal performance of closed loop pulsating heat pipe. Exp. Therm. Fluid Sci. 54, 171–178 (2014)Google Scholar
  38. 38.
    L.G. Asirvatham, R. Nimmagadda, S. Wongwises, Heat transfer performance of screen mesh wick heat pipes using silver–water nanofluid. Int. J. Heat Mass Transf. 60, 201–209 (2013)Google Scholar
  39. 39.
    R. Hajian, M. Layeghi, K.A. Sani, Experimental study of nanofluid effects on thermal performance with response time of heat pipe. Energy Convers. Manag. 56, 63–68 (2012)Google Scholar
  40. 40.
    N. Bhuwakietkumjohn, S. Rittidech, Internal flow patterns on heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves using ethanol and a silver nano-ethanol mixture. Exp. Therm. Fluid Sci. 34(8), 1000–1007 (2010)Google Scholar
  41. 41.
    S.-W. Kang, W.-C. Wei, S.-H. Tsai, C.-C. Huang, Experimental investigation of nanofluids on sintered heat pipe thermal performance. Appl. Therm. Eng. 29(5–6), 973–979 (2009)Google Scholar
  42. 42.
    Y.-H. Lin, S.-W. Kang, H.-L. Chen, Effect of silver nano-fluid on pulsating heat pipe thermal performance. Appl. Therm. Eng. 28(11–12), 1312–1317 (2008)Google Scholar
  43. 43.
    S.-W. Kang, W.-C. Wei, S.-H. Tsai, S.-Y. Yang, Experimental investigation of silver nano-fluid on heat pipe thermal performance. Appl. Therm. Eng. 26(17–18), 2377–2382 (2006)Google Scholar
  44. 44.
    L. Colla, L. Fedele, M.H. Buschmann, Laminar mixed convection of TiO2–water nanofluid in horizontal uniformly heated pipe flow. Int. J. Therm. Sci. 97, 26–40 (2015)Google Scholar
  45. 45.
    Z. Wan, J. Deng, B. Li, X. Yanxiao, X. Wang, Y. Tang, Thermal performance of a miniature loop heat pipe using water–copper nanofluid. Appl. Therm. Eng. 78, 712–719 (2015)Google Scholar
  46. 46.
    A.B. Solomon, K. Ramachandran, L.G. Asirvatham, B.C. Pillai, Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid. Int. J. Heat Mass Transf. 75, 523–533 (2014)Google Scholar
  47. 47.
    M. Kole, T.K. Dey, Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids. Appl. Therm. Eng. 50(1), 763–770 (2013)Google Scholar
  48. 48.
    R.R. Riehl, N. dos Nadjara, Water–copper nanofluid application in an open loop pulsating heat pipe. Appl. Therm. Eng. 42, 6–10 (2012)Google Scholar
  49. 49.
    R. Saleh, N. Putra, S.P. Prakoso, W.N. Septiadi, Experimental investigation of thermal conductivity and heat pipe thermal performance of ZnO nanofluids. Int. J. Therm. Sci. 63, 125–132 (2012)Google Scholar
  50. 50.
    M. Ghanbarpour, N. Nikkam, R. Khodabandeh, M.S. Toprak, Improvement of heat transfer characteristics of cylindrical heat pipe by using SiC nanofluids. Appl. Therm. Eng. 90, 127–135 (2015)Google Scholar
  51. 51.
    K.M. Kim, Y.S. Jeong, I.G. Kim, I.C. Bang, Comparison of thermal performances of water-filled, SiC nanofluid-filled and SiC nanoparticles-coated heat pipes. Int. J. Heat Mass Transf. 88, 862–871 (2015)Google Scholar
  52. 52.
    P. Naphon, P. Assadamongkol, T. Borirak, Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency. Int. Commun. Heat Mass Transfer 35(10), 1316–1319 (2008)Google Scholar
  53. 53.
    C.Y. Tsai, H.T. Chien, P.P. Ding, B. Chan, T.Y. Luh, P.H. Chen, Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance. Mater. Lett. 58(9), 1461–1465 (2004)Google Scholar
  54. 54.
    G. Huminic, A. Huminic, Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids. Energy Convers. Manag. 76, 393–399 (2013)zbMATHGoogle Scholar
  55. 55.
    G. Huminic, A. Huminic, I. Morjan, F. Dumitrache, Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles. Int. J. Heat Mass Transf. 54(1–3), 656–661 (2011)Google Scholar
  56. 56.
    M.R. Tanshen, B. Munkhbayar, M.J. Nine, H. Chung, H. Jeong, Effect of functionalized MWCNTs/water nanofluids on thermal resistance and pressure fluctuation characteristics in oscillating heat pipe. Int. Commun. Heat Mass Transf 48, 93–98 (2013)Google Scholar
  57. 57.
    P. Gunnasegaran, M.Z. Abdullah, N.H. Shuaib, Influence of nanofluid on heat transfer in a loop heat pipe. Int. Commun. Heat Mass Transf. 47, 82–91 (2013)Google Scholar
  58. 58.
    J. Sarkar, P. Ghosh, A. Adil, A review on hybrid nanofluids: recent research, development and applications. Renew. Sustain. Energy Rev. 43, 164–177 (2015)Google Scholar
  59. 59.
    H.M. Buschmann, Nanofluids in thermosyphons and heat pipes: overview of recent experiments and modeling approaches. Int. J. Therm. Sci. 72, 1–17 (2013)Google Scholar
  60. 60.
    Z.-H. Liu, Y.-Y. Li, A new frontier of nanofluid research—application of nanofluids in heat pipes. Int. J. Heat Mass Transf. 55(23–24), 6786–6797 (2012)Google Scholar
  61. 61.
    O.A. Alawi, N.A.C. Sidik, H.A. Mohammed, S. Syahrullail, Fluid flow and heat transfer characteristics of nanofluids in heat pipes: a review. Int. Commun. Heat Mass Transf 56, 50–62 (2014)Google Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentA. D. Patel Institute of TechnologyAnandIndia

Personalised recommendations