Sustainability of Recycled ABS and PA6 by Banana Fiber Reinforcement: Thermal, Mechanical and Morphological Properties

  • Rupinder SinghEmail author
  • Ranvijay Kumar
  • Nishant Ranjan
Original Contribution


In the present study efforts have been made to prepare functional prototypes with improved thermal, mechanical and morphological properties from polymeric waste for sustainability. The primary recycled acrylonitrile butadiene styrene (ABS) and polyamide 6 (PA6) has been selected as matrix material with bio-degradable and bio-compatible banana fibers (BF) as reinforcement. The blend (in form of feed stock filament wire) of ABS/PA6 and BF was prepared in house by conventional twin screw extrusion (TSE) process. Finally feed stock filament of ABS/PA6 reinforced with BF was put to run on open source fused deposition modelling based three dimensional printer (without any change in hardware/software of the system) for printing of functional prototypes with improved thermal/mechanical/morphological properties. The results are supported by photomicrographs, thermographs and mechanical testing.


Twin screw extrusion Fused deposition modelling Banana fibers ABS PA6 Recycling Mechanical Thermal 



The authors are thankful to Creatius3D and Manufacturing Research Lab, GNDEC, Ludhiana for providing technical/financial assistance to carry out the research work.


  1. 1.
    A. Ghosh, S. Das, A. Majumder, A statistical analysis of cotton fiber properties. J. Inst. Eng. India Ser. E 97, 1 (2016). CrossRefGoogle Scholar
  2. 2.
    B. Biswas, S. Chabri, B.C. Mitra et al., Mechanical behaviour of aluminium dispersed unsaturated polyester/jute composites for structural applications. J. Inst. Eng. India Ser. C (2016). Google Scholar
  3. 3.
    M. Ramesh, T.S.A. Atreya, U.S. Aswin, H. Eashwar, C. Deepa, Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Proc Eng 97, 563–572 (2014)CrossRefGoogle Scholar
  4. 4.
    N. Amir, K.A.Z. Abidin, F.B.M. Shiri, Effects of fibre configuration on mechanical properties of banana fibre/PP/MAPP natural fibre reinforced polymer composite. Proc Eng 184, 573–580 (2017)CrossRefGoogle Scholar
  5. 5.
    K. Rahul, M.H. Shetty, K. Madhyastha, K.P. D’Souza, L. D’Souza, Processing and characterisation of banana fiber reinforced polymer nano composite. Nanosci Nanotechnol 7(2), 34–37 (2017)Google Scholar
  6. 6.
    A. Majumdar, Y. Kyosev, Modeling and optimization in fibrous materials. J. Inst. Eng. India Ser. E 96, 87 (2015). CrossRefGoogle Scholar
  7. 7.
    M. Ramesh, R. Logesh, M. Manikandan, N.S. Kumar, D.V. Pratap, Mechanical and water intake properties of banana-carbon hybrid fiber reinforced polymer composites. Mater Res 20(2), 365–376 (2017)CrossRefGoogle Scholar
  8. 8.
    R. Bhoopathi, M. Ramesh, C. Deepa, Fabrication and property evaluation of banana-hemp-glass fiber reinforced composites. Proc Eng 97, 2032–2041 (2014)CrossRefGoogle Scholar
  9. 9.
    M.G. El-Meligy, S.H. Mohamed, R.M. Mahani, Study mechanical, swelling and dielectric properties of prehydrolysed banana fiber–waste polyurethane foam composites. Carbohyd. Polym. 80(2), 366–372 (2010)CrossRefGoogle Scholar
  10. 10.
    J. Santhosh, N. Balanarasimman, R. Chandrasekar, S. Raja, Study of properties of banana fiber reinforced composites. Int. J. Res. Eng. Technol. 3(11), 144–150 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Ramdhonee, P. Jeetah, Production of wrapping paper from banana fibres. J. Environ. Chem. Eng. (2017). Google Scholar
  12. 12.
    R.S. Rana, R. Purohit, A review on mechanical property of sisal glass fiber reinforced polymer composites. Mater Today Proc. 4(2), 3466–3476 (2017)CrossRefGoogle Scholar
  13. 13.
    I.K. Neelamana, S. Thomas, J. Parameswaranpillai, Characteristics of banana fibers and banana fiber reinforced phenol formaldehyde composites-macroscale to nanoscale. J. Appl. Polym. Sci. 130(2), 1239–1246 (2013)CrossRefGoogle Scholar
  14. 14.
    L.A. Pothan, Z. Oommen, S. Thomas, Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos. Sci. Technol. 63(2), 283–293 (2003)CrossRefGoogle Scholar
  15. 15.
    M. Ramachandran, S. Bansal, P. Raichurkar, Experimental study of bamboo using banana and linen fibre reinforced polymeric composites. Perspect. Sci. 8, 313–316 (2016)CrossRefGoogle Scholar
  16. 16.
    R. Singh, K. Sahni, Some investigations on effect of cooling rate on Al2O3 reinforced Al-MMC prepared by vacuum moulding. J. Inst. Eng. India Ser. C 97, 431 (2016). CrossRefGoogle Scholar
  17. 17.
    A. Rathore, M.K. Pradhan, Hybrid cellulose bionanocomposites from banana and jute fibre: a review of preparation, properties and applications. Mater Today Proc 4(2), 3942–3951 (2017)CrossRefGoogle Scholar
  18. 18.
    S.M. Sapuan, A. Leenie, M. Harimi, Y.K. Beng, Mechanical properties of woven banana fibre reinforced epoxy composites. Mater. Des. 27(8), 689–693 (2006)CrossRefGoogle Scholar
  19. 19.
    N. Venkateshwaran, A. Elayaperumal, Banana fiber reinforced polymer composites—a review. J. Reinf. Plast. Compos. 29(15), 2387–2396 (2010)CrossRefGoogle Scholar
  20. 20.
    H.U. Zaman, M.D.H. Beg, Banana fiber strands–reinforced polymer matrix composites. Compos. Interfaces 23(4), 281–295 (2016)CrossRefGoogle Scholar
  21. 21.
    R. Singh, R. Kumar, M.S.J. Hashmi, Friction welding of dissimilar plastic-based material by metal powder reinforcement. Reference module in materials science and materials engineering, vol. 13 (Elsevier, Oxford, 2016), pp. 1–16. Google Scholar
  22. 22.
    R. Kumar, R. Singh, I.P.S. Ahuja, A framework for welding of dissimilar polymers by using metallic fillers. IJMSE 8(1), 101–105 (2017)Google Scholar
  23. 23.
    R. Singh, R. Kumar, Development of low-cost graphene-polymer blended in-house filament for fused deposition modeling. In Reference module in materials science and materials engineering, ed. by S. Hashmi (Elsevier, Oxford, 2017) pp. 1–10Google Scholar
  24. 24.
    R. Singh, R. Kumar, S. Kumar, Polymer waste as fused deposition modeling feed stock filament for industrial applications. Reference module in materials science and materials engineering (Elsevier, Oxford, 2017). Google Scholar
  25. 25.
    R. Kumar, R. Singh, D. Hui, L. Feo, F. Fraternali, Graphene as biomedical sensing element: state of art review and potential engineering applications. Compos. Part B Eng. (2017). Google Scholar
  26. 26.
    R. Singh, R. Kumar, L. Feo, F. Fraternali, Friction welding of dissimilar plastic/polymer materials with metal powder reinforcement for engineering applications. Compos. B Eng. 101, 77–86 (2016)CrossRefGoogle Scholar
  27. 27.
    R. Kumar, R. Singh, I.P.S. Ahuja, A. Amendola, R. Penna, Friction welding for the manufacturing of PA6 and ABS structures reinforced with Fe particles. Compos. Part B Eng. (2017). Google Scholar
  28. 28.
    H.K. Garg, R. Singh, Modelling the peak elongation of Nylon6 and Fe powder based composite wire for FDM feedstock filament. J. Inst. Eng. India Ser. C 98, 567 (2017). CrossRefGoogle Scholar
  29. 29.
    A. Qattawi, B. Alrawi, A. Guzman, Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach. Proc. Manuf. 10, 791–803 (2017)Google Scholar
  30. 30.
    M.H. Too, K.F. Leong, C.K. Chua, Z.H. Du, S.F. Yang, C.M. Cheah, S.L. Ho, Investigation of 3D non-random porous structures by fused deposition modelling. Int. J. Adv. Manuf. Technol. 19(3), 217–223 (2002)CrossRefGoogle Scholar
  31. 31.
    S.H. Masood, W. Rattanawong, P. Iovenitti, Part build orientations based on volumetric error in fused deposition modelling. Int. J. Adv. Manuf. Technol. 16(3), 162–168 (2000)CrossRefGoogle Scholar
  32. 32.
    I. Gibson, D.W. Rosen, B. Stucker, Additive manufacturing technologies, vol. 238 (Springer, New York, 2010)CrossRefGoogle Scholar
  33. 33.
    D.S. Thomas, S.W. Gilbert, Costs and cost effectiveness of additive manufacturing. NIST Spec. Publ. 1176, 12 (2014)Google Scholar
  34. 34.
    C.S. Lee, S.G. Kim, H.J. Kim, S.H. Ahn, Measurement of anisotropic compressive strength of rapid prototyping parts. J. Mater. Process. Technol. 187, 627–630 (2007)CrossRefGoogle Scholar
  35. 35.
    A. Baharin, N.A. Fattah, A.A. Bakar, Z.M. Ariff, Production of laminated natural fibre board from banana tree wastes. Proc. Chem. 19, 999–1006 (2016)CrossRefGoogle Scholar
  36. 36.
    J. Wang, A. Olah, E. Baer, Continuous micro-/nano-fiber composites of polyamide 6/polyethylene oxide with tunable mechanical properties using a novel co-extrusion technique. Polymer 82(1), 166–171 (2016)CrossRefGoogle Scholar
  37. 37.
    J. Sudeepan, K. Kumar, T.K. Barman, P. Sahoo, Mechanical and tribological behavior of ABS/TiO2 polymer composites and optimization of tribological properties using grey relational analysis. J. Inst. Eng. India Ser. C 97(1), 41–53 (2016)CrossRefGoogle Scholar
  38. 38.
    A.K. Mishra, R.K. Srivastava, Wear behaviour of Al-6061/SiC metal matrix composites. J. Inst. Eng. India Ser. C 98(2), 97–103 (2017)CrossRefGoogle Scholar
  39. 39.
    R. Singh, R. Kumar, N. Ranjan, R. Penna, F. Fraternali, On the recyclability of polyamide for sustainable composite structures in civil engineering. Compos. Struct. (2017). Google Scholar
  40. 40.
    W. Jordan, P. Chester, Improving the Properties of banana fiber reinforced polymeric composites by treating the fibers. Proc. Eng. 200, 283–289 (2017). CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2018

Authors and Affiliations

  1. 1.Department of Production EngineeringGuru Nanak Dev Engineering CollegeLudhianaIndia

Personalised recommendations