Advertisement

Surface Morphology and Hardness Analysis of TiCN Coated AA7075 Aluminium Alloy

  • M. K. SrinathEmail author
  • M. S. Ganesha Prasad
Original Contribution

Abstract

Successful titanium carbonitride (TiCN) coating on AA7075 plates using the PVD technique depends upon many variables, including temperature, pressure, incident angle and energy of the reactive ions. Coated specimens have shown an increase in their surface hardness of 2.566 GPa. In this work, an attempt to further augment the surface hardness and understand its effects on the surface morphology was performed through heat treatments at 500°C for different duration of times. Specimen’s heat treated at 500°C for 1 h exhibited a maximum surface hardness of 6.433 GPa, corresponding to an increase of 92.07%. The XRD results showed the presence of Al2Ti and AlTi3N and indicate the bond created between them. Unit cell lattice parameters in the XRD data are calculated using Bragg’s law. The SEM images exhibit increasing crack sizes as the heat treatment time is increased. From the studies, the heat treatment duration can be optimized to 1 h, which exhibited an augmented surface hardness, as further increases in durations caused a drop in the surface hardness. The heat treatment effectively modified the surface hardness. Equations providing the relationships that temperature and time have with the reaction parameters are presented.

Keywords

TiCN AA7075 PVD-coatings XRD SEM Surface hardness 

References

  1. 1.
    D.T. Gawne, Surface engineering: advanced materials for industrial applications. Rev. Latinoam. Metal. Mater. 13, 5 (1993)Google Scholar
  2. 2.
    O.P. Khanna, M. Lal, A Textbook of Material Science and Metallurgy, 5th edn. (Dhanpat Rai, Delhi, 1987)Google Scholar
  3. 3.
    E.S. Puchi-Cabrera, C. Villalobos-Gutiérrez, I. Irausquín, J. La Barbera-Sosa, G. Mesmacque, Fatigue behaviour of a 7075-T6 aluminium alloy coated with an electroless Ni–P. Int. J. Fatigue 28, 1854 (2006)CrossRefGoogle Scholar
  4. 4.
    G.H. Majzoobi, J. Nemati, A.J.N. Rooz, G.H. Farrahi, Modification of fretting fatigue behaviour of Al7075-T6 alloy by the application of titanium coaying using IBED technique and shot peening. Tribol. Int. 42, 121 (2009)CrossRefGoogle Scholar
  5. 5.
    E.S. Puchi-Cabrera, M.H. Staia, J. Lesage, L. Gil, C. Villalobos-Gutiérrez, J. La Barbera-Sosa, E. Ochoa-Pérez, E. Le Bourhis, Fatigue behaviour of AA7075-T6 aluminium alloy coated with ZrN by PVD. Int. J. Fatigue 30, 1220 (2008)CrossRefGoogle Scholar
  6. 6.
    A.P. Abbott, K. El Ttaib, K.S. Ryder, E.L. Smith, Electro deposition of nickel using eutectic based ionic liquids. Trans. IMF 86, 234 (2008)CrossRefGoogle Scholar
  7. 7.
    G.W. Goward, D.H. Boone, Mechanisms of formation of diffusion Aluminide coatings on nickel-base superalloys. Oxid. Met. 3, 475 (1971)CrossRefGoogle Scholar
  8. 8.
    S. Hiromoto, T. Yamazaki, Micromorphological effect of calcium phosphate coating on compatibility of magnisium alloy with osteoblast. Sci. Technol. Adv. Mater. 18, 96 (2017)CrossRefGoogle Scholar
  9. 9.
    M.H. Jacobs, Surface engineering of materials. Mater. Des. 14, 33 (1993)CrossRefGoogle Scholar
  10. 10.
    R. Figueroa, C.M. Abreu, M.J. Cristóbal, G. Pena, Effect of nitrogen and molybdenum ion implantation in the tribological behavior of AA7075 aluminium alloy. R Wear 276, 53 (2012)CrossRefGoogle Scholar
  11. 11.
    A. Matthews, A. Leyland, Hybrid coating techniques in coating. Surf. Coat. Technol. 71, 88 (1995)CrossRefGoogle Scholar
  12. 12.
    Y.J. Jo, Y.H. Jo, J.G. Seong, Y.H. Kim, S.Y. Chang, M.S. Noh, H.G. Jeong, W.H. Lee, Rapid recrystallisation and surface modification of titanium by electro discharge. Surf. Eng. 31, 885 (2015)CrossRefGoogle Scholar
  13. 13.
    K. Brunelli, M. Dabalà, C. Martini, Surface hardening of Al-7075 alloy by diffusion treatments of electrolytic Ni coatings. La Metall. Memorie la metallurgia italiana 7, 8 (2006)Google Scholar
  14. 14.
    R.N. Rao, S. Das, D.P. Mondal, G. Dixit, Effect of heat treatment on the sliding wear behavior of aluminium alloy (Al–Zn–Mg) hard particle composite. Tribol. Int. 43, 330 (2010)CrossRefGoogle Scholar
  15. 15.
    N.R. Kadam, G. Karthikeyan, Wear evaluation of AISI 4140 alloy steel with WC/C lamellar coatings sliding against EN 8 using Taguchi method. J. Inst. Eng. (India) Ser. C 97, 547 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Moarrefzadeh, M. Branch, Similation and modeling of physical Vapor Deposition (PVD) process. WSEAS Trans. Appl. Theor. Mech. 7, 2224 (2012)Google Scholar
  17. 17.
    A. AlHazaa, T.I. Khan, I. Haq, Transient liquid phase (TLP) bonding of al-7075 to Ti–6Al–4V alloy. Mater. Charact. 61, 312 (2010)CrossRefGoogle Scholar
  18. 18.
    Y.B. Lin, T.F. Chen, J. Tao, Y.Z. Shen, H.G. Li, Diffusion and plasma oxidation mechanism of Fe–Al coatings. Surf. Eng. 31, 329 (2015)CrossRefGoogle Scholar
  19. 19.
    B.Z. Duan, P.Z. Zhang, X.F. Wei, L. Wang, D.B. Wei, D.D. Zhen, Effects of elements W and C on microstructure and wear property of γ-TiAl surface alloying layer. Surf. Eng. 31, 942 (2015)CrossRefGoogle Scholar
  20. 20.
    H. Yang, Z. Wang, H. Zhang, Y. Ma, X. Liu, Z. He, Microstructure and nano-indentation behaviour of Ni surface modified Ti6Al4V. Surf. Eng. 31, 923 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Nouri, S. Rastegari, S. Mirdamadi, M. Hadavi, Microstructure and oxidation resistance of Si modified aluminide coating on TiAl based alloys. Surf. Eng. 31, 930 (2015)CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNew Horizon College of EngineeringBangaloreIndia

Personalised recommendations