Advertisement

Performance Analysis of Distributed Energy Resource-Based LV Distribution Grid

  • Rinchin W. MosobiEmail author
  • Sarsing Gao
Original Contribution
  • 87 Downloads

Abstract

Distributed energy resources (DERs) are mostly low-power-generating units. In order to augment the energy demands, integration of such energy sources with LV distribution grid is a viable option. A good-quality power from DER ensures safe operation of distribution grid. In this work, an integrated DER consisting of a photovoltaic system, a wind energy conversion system and a micro-hydro system is proposed and coupled to a common DC bus through appropriate power electronic interfacing circuits. A grid interfacing inverter is implemented as an inter-tie between DC-coupled DER and LV distribution grid. The DER supports the DC link voltage of the interfacing inverter. The performance of the distribution grid is examined via connection of a 3-phase nonlinear load onto the distribution grid. The interfacing inverter incorporates the features of DSTATCOM. The effectiveness of DSTATCOM-DER topology in mitigating the power quality problems of nonlinear load is realized through Icosφ control strategy. The results obtained are adequately explained. The quality of power at the point of common coupling is analyzed using total harmonic distortion and total demand distortion and is found to be within IEEE Std. 519-2014. The complete system is modeled and simulated in MATLAB/Simulink.

Keywords

Variable renewable energy Distributed energy resources LV distribution grid DSTATCOM PCC Power quality 

Notes

References

  1. 1.
    T. Adefarati, R.C. Bansal, Integration of renewable distributed generators into the distribution system: a review. IET Renew. Power Gener. 10(7), 873–884 (2016)CrossRefGoogle Scholar
  2. 2.
    B. Bhandari, S.R. Poudel, K.-L. Lee, S.-H. Ahn, Mathematical modeling of hybrid renewable energy system: a review on small hydro-solar–wind power generation. Int. J. Precis. Eng. Manuf. Green Technol. 1(2), 157–173 (2014)CrossRefGoogle Scholar
  3. 3.
    M.H. Nehrir, C. Wang, K. Strunz, H. Aki, R. Ramakumar, J. Bing, Z. Miao, Z. Salameh, A review of hybrid renewable/alternative energy systems for electric power generation: configurations, control, and applications. IEEE Trans. Sustain. Energy 2(4), 392–403 (2011)CrossRefGoogle Scholar
  4. 4.
    F. Blaabjerg, Z. Chen, S.B. Kjaer, Power electronics as efficient interface in dispersed power generation systems. IEEE Trans. Power Electron. 19(5), 1184–1194 (2004)CrossRefGoogle Scholar
  5. 5.
    J.M. Carrasco, L.G. Franquelo, J.T. Bialasiewicz, E. Galván, R.C. Portillo Guisado, M. Ángeles Martín Prats, J.I. León, N. Moreno-Alfonso, Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans. Ind. Electron. 53(4), 1002–1016 (2006)CrossRefGoogle Scholar
  6. 6.
    A. Chauhan, R.P. Saini, A review on integrated renewable energy system based power generation for stand-alone applications: configurations, storage options, sizing methodologies and control. Int. J. Renew. Sustain. Energy Rev. 38, 99–120 (2014)CrossRefGoogle Scholar
  7. 7.
    A. Ghosh, G. Ledwich, Power quality enhancement using custom power devices, Ist edn. (Springer, London, 2002), p. 460CrossRefGoogle Scholar
  8. 8.
    B. Singh, P. Jayaprakash, D.P. Kothari, A. Chandra, K. Al Haddad, Comprehensive study of DSTATCOM configurations. IEEE Trans. Ind. Inform. 10(2), 854–870 (2014)CrossRefGoogle Scholar
  9. 9.
    B. Singh, J. Solanki, A comparison of control algorithms for DSTATCOM. IEEE Trans. Ind. Electron. 56(7), 2738–2745 (2009)CrossRefGoogle Scholar
  10. 10.
    P. Kumar, N. Kumar, A.K. Akella, A simulation-based case study for control of DSTATCOM. ISA Trans. 53, 767–775 (2014)CrossRefGoogle Scholar
  11. 11.
    S. Kasa, P. Ramanathan, S. Ramasamy, D.P. Kothari, Effective grid interfaced renewable sources with power quality improvement using dynamic active power filter. Int. J. Electr. Power Energy Syst. 82, 150–160 (2016)CrossRefGoogle Scholar
  12. 12.
    K.J.P. Macken, K. Vanthournout, J. Van den Keybus, G. Deconinck, R.J.M. Belmans, Distributed control of renewable generation units with integrated active filter. IEEE Trans. Power Electron. 19(5), 1353–1360 (2004)CrossRefGoogle Scholar
  13. 13.
    M. Singh, V. Khadkikar, A. Chandra, R.K. Varma, Grid interconnection of renewable energy sources at the distribution level with power-quality improvement features. IEEE Trans. Power Deliv. 26(1), 307–315 (2011)CrossRefGoogle Scholar
  14. 14.
    C.N. Bhende, A. Kalam, S.G. Malla, Mitigation of power quality problems in grid-interactive distributed generation system. Int. J. Emerg. Electr. Power Syst. 17(2), 165–172 (2016)CrossRefGoogle Scholar
  15. 15.
    Engler, Applicability of droops in low voltage grids. Int. J. Distrib. Energy Resour. 1(1), 1–6 (2005)MathSciNetGoogle Scholar
  16. 16.
    M.S.H. Lipu, M.S. Uddin, M.A.R. Miah, A feasibility study of the solar–wind–diesel hybrid system in rural and remote areas of Bangladesh. Int. J. Renew. Energy Resour. 3, 895–900 (2013)Google Scholar
  17. 17.
    S.G. Malla, C.N. Bhende, Enhanced operation of stand-alone photovoltaic-diesel generator-battery system. Int. J. Electr. Power Syst. Res. 107, 250–257 (2014)CrossRefGoogle Scholar
  18. 18.
    Kyocera KC200GT solar photovoltaic power modules datasheetGoogle Scholar
  19. 19.
    M.G. Villalva, J.R. Gazoli, E. Filho, Comprehensive approach to modelling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 24, 1198–1208 (2009)CrossRefGoogle Scholar
  20. 20.
    M.G. Molina, E.C. dos Santos, M. Pacas, Improved power conditioning system for grid integration of photovoltaic solar energy conversion systems, in Transmission and Distribution Conference and Exposition, PES, pp. 163–170 (2010)Google Scholar
  21. 21.
    H.A. Sher, A.F. Murtaza, A. Noman, K.E. Addoweesh, K. Al-Haddad, M. Chiaberge, A new sensorless hybrid MPPT algorithm based on fractional short-circuit current measurement and P&O MPPT. IEEE Trans. Sustain. Energy 6(4), 1426–1434 (2015)CrossRefGoogle Scholar
  22. 22.
    G. Raina, O.P. Malik, Wind energy conversion using a self-excited induction generator. IEEE Trans. Power Appar. Syst. PAS-102, 3933–3936 (1983)CrossRefGoogle Scholar
  23. 23.
    D. Seyoum, M.F. Rahman, C. Grantham, Terminal voltage control of a wind turbine driven isolated induction generator using stator oriented field control, in IEEE Proceedings of Applied Power Electronics Conference and Exposition, vol. 2, pp. 846–852 (2003)Google Scholar
  24. 24.
    S. Gao, G. Bhuvaneswari, S.S. Murthy, U.K. Kalla, Efficient voltage regulation scheme for three-phase self-excited induction generator feeding single-phase load in remote locations. IET Renew. Power Gener. 8, 100–108 (2014)CrossRefGoogle Scholar
  25. 25.
    S.S. Murthy, O.P. Malik, A.K. Tandon, Analysis of self-excited induction generators. IEE Proc. C Gener. Transm. Distrib. 129(6), 260–265 (1982)CrossRefGoogle Scholar
  26. 26.
    M.G. Molina, M. Pacas, Improved power conditioning system of microhydro power plant for distributed generation applications, in IEEE International Conference on Industrial Technology ICIT, pp. 1733–1738 (2010)Google Scholar
  27. 27.
    N. Al Sayari, R. Chilipi, M. Barara, An adaptive control algorithm for grid-interfacing inverters in renewable energy based distributed generation systems. Int. J. Energy Convers. Manag. 111, 443–452 (2016)CrossRefGoogle Scholar
  28. 28.
    K. Ilango, P.V. Manitha, M.G. Nair, Modified ICos\(\Phi\) controller for shunt active filter interfacing renewable energy source and grid. AASRI Procedia 2, 62–68 (2012).  https://doi.org/10.1016/j.aasri.2012.09.015 CrossRefGoogle Scholar
  29. 29.
    M.G. Nair, G. Bhuvaneswari, Design, simulation and analog circuit implementation of a three-phase shunt active filter using Icosϕ algorithm. IEEE Trans. Power Deliv. 23(2), 1222–1235 (2008)CrossRefGoogle Scholar
  30. 30.
    A. Kalair, N. Abas, A.R. Kalair, Z. Saleem, N. Khan, Review of harmonic analysis, modeling and mitigation techniques. Renew. Sustain. Energy Rev. 78, 1152–1187 (2017)CrossRefGoogle Scholar
  31. 31.
    IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems. IEEE Std 519-2014 (Revision of IEEE Std 519-2003).Google Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNorth Eastern Regional Institute of Science and TechnologyNirjuli, ItanagarIndia

Personalised recommendations