Advertisement

Voltage-Controlled Oscillator Design Using MOS Varactor

  • Manoj KumarEmail author
Original Contribution
  • 12 Downloads

Abstract

In this work, voltage-controlled ring oscillator (VCO) by employing the three transistors (3T) XOR gates and NMOS varactor load has been reported. Output load has been varied with the application of reverse body bias voltage of NMOS transistor. VCO circuits with 3 and 5 delay stages have been designed. The output frequency is controlled by coarse and fine tuning techniques. The coarse tuning is provided with the variation in supply voltage (VCT) in the range of 1.8 V to 3.3 V. Further, fine tuning has been obtained with variation in reverse substrate bias voltage of NMOS varactor load from 0 to − 1 V. A three-stage VCO design shows output frequency deviation from 340.136 to 628.930 MHz and power consumption ranges from 0.1658 to 1.1285 mW with coarse tuning technique. Frequency deviation from 340.136 to 333.344 MHz and power consumption deviation from 0.1658 to 0.1648 mW have been obtained with fine tuning in three-stage VCO with fixed VCT of 1.8 V. A five-stage VCO design provides the output frequency from 189.035 to 328.947 MHz with power consumption range varying from 0.1698 mW to 1.1364 mW in coarse tuning mode. Moreover, five-stage VCO with fine tuning shows frequency variations from 328.947 to 326.797 MHz with varied power from 1.1364 to 1.1350 mW having the fixed VCT of 3.3 V. Results have been achieved with SPICE in 0.35-µm CMOS technology. An assessment of proposed VCO with previously reported circuits shows improvements in terms of output frequency range and power consumption.

Keywords

CMOS Oscillators Power consumption Variable load 

Notes

References

  1. 1.
    D.W. Boerstler, A low-jitter PLL clock generator for microprocessors with lock range of 340–612 MHz. IEEE J. Solid State Circuits 34(4), 513–519 (1999)CrossRefGoogle Scholar
  2. 2.
    S.Y. Lee, J.Y. Hsieh, Analysis and implementation of a 0.9-V voltage-controlled oscillator with low phase noise and low power dissipation. IEEE Trans. Circuits Syst. II Express Briefs 55(7), 624–627 (2008)CrossRefGoogle Scholar
  3. 3.
    H. Thabet, S. Meillère, M. Masmoudi, J.L. Seguin, H. Barthelemy, K. Aguir, A low power consumption CMOS differential-ring VCO for a wireless sensor. Analog Integr. Circuit Signal Process 73(3), 731–740 (2012)CrossRefGoogle Scholar
  4. 4.
    B. Catli,M.M. Hella, A 0.5-V 3.6/5.2 GHz CMOS multi-band LC VCO for ultra low-voltage wireless applications, in IEEE International Symposium on Circuits and Systems, 2008 (ISCAS 2008), pp. 996–999 (2008, May)Google Scholar
  5. 5.
    Y.A. Eken, J.P. Uyemura, A 5.9-GHz voltage-controlled ring oscillator in 0.18-μm CMOS. IEEE J. Solid State Circuits 39(1), 230–233 (2005)CrossRefGoogle Scholar
  6. 6.
    H.R. Kim, C.Y. Cha, S.M. Oh, M.S. Yang, S.G. Lee, A very low-power quadrature VCO with back-gate coupling. IEEE J. Solid State Circuits 39(6), 952–955 (2004)CrossRefGoogle Scholar
  7. 7.
    M.J. Deen, M.H. Kazemeini, S. Naseh, Performance characteristics of an ultra-low power VCO, in International Symposium on Circuits and Systems, 2003 (ISCAS’03), vol 1, pp. I–697 (2003)Google Scholar
  8. 8.
    T. Li, B. Ye, J. Jiang, 0.5 V 1.3 GHz voltage controlled ring oscillator, in IEEE 8th International Conference on ASIC, 2009 (ASICON’09), pp. 1181–1184 (2009, October)Google Scholar
  9. 9.
    S.K. Enam, A.A. Abidi, A 300-MHz CMOS voltage-controlled ring oscillator. IEEE J. Solid State Circuits 25(1), 312–315 (1990)CrossRefGoogle Scholar
  10. 10.
    M. Kumar, S. Arya, S. Pandey, Ring VCO design with variable capacitance XNOR delay cell. J. Inst. Eng. (India) Ser. B 96(4), 371–379 (2015)CrossRefGoogle Scholar
  11. 11.
    J.K. Panigrahi, D.P. Acharya, Performance analysis and design of wideband CMOS voltage controlled ring oscillator, in International Conference on Industrial and Information Systems (ICIIS), pp. 234–238 (2010)Google Scholar
  12. 12.
    J. Jin, Low power current-mode voltage controlled oscillator for 2.4 GHz wireless applications. Comput. Electr. Eng. 40(1), 92–99 (2014)CrossRefGoogle Scholar
  13. 13.
    Y.J. Chen, M. du Plessis, An integrated 0.35 μm CMOS optical receiver with clock and data recovery circuit. Microelectron. J. 37(9), 985–992 (2006)CrossRefGoogle Scholar
  14. 14.
    S. Yeop Lee, S. Amakawa, N. Ishihara, K. Masu, Low-Phase-Noise Wide-Frequency-Range Ring-VCO-Based Scalable PLL with Subharmonic Injection Locking in 0.18 μm CMOS, in IEEE MIT-S International Microwave Symposium (IMS2010), pp. 1178–1181 (2010, May)Google Scholar
  15. 15.
    J.M. Kim, S. Kim, I.Y. Lee, S.K. Han, S.G. Lee, A low-noise four-stage voltage-controlled ring oscillator in deep-submicrometer CMOS technology. IEEE Trans. Circuits Syst. II Express Briefs 60(2), 71–75 (2013)CrossRefGoogle Scholar
  16. 16.
    T.V. Cao, D.T. Wisland, T.S. Lande, F. Moradi, Low-voltage, low-power, and wide-tuning-range ring-VCO for frequency ΔΣ modulator, in IEEE NORCHIP, 2008, pp. 79–84 (2008, November)Google Scholar
  17. 17.
    W.H. Lee, B.J. Gu, Y. Nishida, H. Takao, K. Sawada, M. Ishida, Oscillation-controlled CMOS ring oscillator for wireless sensor systems. Microelectron. J. 41(12), 815–819 (2010)CrossRefGoogle Scholar
  18. 18.
    L.S. De Paula, S. Bampi, E. Fabris, A.A. Susin, A high swing low power CMOS differential voltage-controlled ring oscillator in IEEE International Conference on Electronics, Circuits and Systems, 2007 (ICECS 2007), pp. 498–501 (2007)Google Scholar
  19. 19.
    C. Sanchez-Azqueta, S. Celma, F. Aznar, A 0.18 μm CMOS ring VCO for clock and data recovery applications. Microelectron. Reliab. 51(2), 2351–2356 (2011)CrossRefGoogle Scholar
  20. 20.
    B.C. Sarkar, M.K. Mandal, A ring oscillator based frequency synthesizer without using frequency divider. Int. J. Electron. 94(2), 123–136 (2007)CrossRefGoogle Scholar
  21. 21.
    A. Ramazani, S. Biabani, G. Hadidi, CMOS ring oscillator with combined delay stages. AEU Int. J. Electron. Commun. 68(6), 515–519 (2014)CrossRefGoogle Scholar
  22. 22.
    K. Roy, S.C. Prasad, Low-Power CMOS VLSI Circuit Design (Wiley, London, 2000)Google Scholar
  23. 23.
    S. Docking, M. Sachdev, A method to derive an equation for the oscillation frequency of a ring oscillator. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50(2), 259–264 (2003)CrossRefGoogle Scholar
  24. 24.
    S.M. Martin, K. Flautner, T. Mudge, D. Blaauw, Combined dynamic voltage scaling and adaptive body biasing for lower power microprocessors under dynamic workloads, in IEEE International Conference on Computer-Aided Design, pp. 721–725 (2002)Google Scholar
  25. 25.
    Y. Tsividis, Mixed Analog-Digital VLSI devices and Technology (McGraw Hill, Singapore, 1996)Google Scholar
  26. 26.
    J. Maget, M. Tiebout, R. Kraus, Influence of novel MOS varactors on the performance of a fully integrated UMTS VCO in standard 0.25-μm CMOS technology. IEEE J. Solid State Circuits 37(7), 953–958 (2002)CrossRefGoogle Scholar
  27. 27.
    R.L. Bunch, S. Raman, Large-signal analysis of MOS varactors in CMOS-G m LC VCOs. IEEE J. Solid State Circuits 38(8), 1325–1332 (2003)CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.University School of Information and Communication TechnologyGuru Gobind Singh Indraprastha UniversityNew DelhiIndia

Personalised recommendations