Online Equivalent Circuit Parameter Estimation of Three-Phase Induction Motor Using ANN

  • D. K. ChaturvediEmail author
  • Mayank Pratap Singh
Original Contribution


Three-phase induction motor is compact, robust and simple in construction. An accurate estimation of parameters is always required for precise control and monitoring of three-phase induction motor. There are many ways to find the induction motor parameters, but to improve the accuracy of them, the neural approach is used in this paper. The GNN used for online estimation of delta-connected induction motor parameters is presented, and the results are compared with ANN. Experimental setup is developed in Electrical Power Research Lab at Dayalbagh Educational Institute, Agra, U.P., India, which consists of a 415-V, 50-Hz, three-phase squirrel-cage induction motor, belt-pulley loading system, voltage-, current- and power-measuring sensors, three-phase autotransformer, data acquisition system and online parameter estimator. The sensor data are used to estimate induction motor parameters online using neural approach.


Parameter estimation Three-phase induction motor GNN Artificial neural networks (ANNs) Equivalent circuit parameters Soft computing techniques 

List of Symbols


Series resistance of stator side (ohm)


Series reactance of stator side (ohm)


Effective series resistance of rotor referred to stator side


Effective series reactance of rotor referred to stator side



  1. 1.
    M. Wlas, Z. Krzemi´nski, H.A. Toliyat, Neural-network-based parameter estimations of induction motors. IEEE Trans. Ind. Electron. 55(4), 1783–1794 (2008)CrossRefGoogle Scholar
  2. 2.
    P.S. Bhimra, Gerneralized Theory of Electrical Machine (Khanna Publishers, Delhi, 2018), pp. 421–620. (Chapter. no. 8) Google Scholar
  3. 3.
    M. Mardani, M. Ojaghi, Parameter estimation of induction motor using shuffled frog leaping and imperialistic competitive algorithms, in International Power System Conference, Tehran-Iran (2011)Google Scholar
  4. 4.
    O.P. Malik, Karrari Mehdi, Ahmadi Salman, Synchronous generator parameter estimation using data collected with machine in closed-loop operation. J. Electr. Power Compon. Syst. 43(6), 1859–1871 (2015)Google Scholar
  5. 5.
    B. Urwahyudi, Soebagio, M. Ashari, RNN based rotor flux and speed estimation of induction motor. Int. J. Power Electron. Drive Syst. (JPEDS) 1(1), 58–64 (2011)Google Scholar
  6. 6.
    J. Sadasivan, Genetic algorithm based parameter identification of three phase induction motors. Int. J. Comput. Appl. 31(10), 0975–8887 (2011)Google Scholar
  7. 7.
    G.Y. Sizov, A. Sayed-Ahmed, C.C. Yeh, N.A.O. Demerdash, Analysis and diagnostics of adjacent and nonadjacent broken rotor-bar faults in squirrel-cage induction machines. IEEE Trans. Ind. Electron. 56(11), 4627–4641 (2009)CrossRefGoogle Scholar
  8. 8.
    J. Treetrong, Induction motor fault detection based on parameter identification using genetic algorithm. J. KMUTNB 20(3), 400–408 (2010)Google Scholar
  9. 9.
    M. Nemec, D. Makuc, V. Ambrožiè, R. Fišer, Simplified model of induction machine with electrical rotor asymmetry (ICEM, Rome, Italy, 2010)Google Scholar
  10. 10.
    A. Khezzar, K.O.M. El, M. Hadjami, M. Boucherma, H. Razik, Induction motor diagnosis using line neutral voltage signatures. IEEE Trans. Ind. Electron. 56(11), 4581–4591 (2009)CrossRefGoogle Scholar
  11. 11.
    A. K. Mahamad, T. Hiyama, Improving Elman network using genetic algorithm for bearing failure diagnosis of induction motor, in Proceedings of IEEE SDEMPED (2009), pp. 1–6Google Scholar
  12. 12.
    H. Nerkar Madhavi, B.E. Kushare, Neural-network-based parameter estimations of induction motor. ITSI Trans. Electr. Electron. Eng. ITSI-TEEE 1(2), 2320–8945 (2013)Google Scholar
  13. 13.
    L. Frosini, E. Bassi, Stator current and motor efficiency as indicators for different types of bearing faults in induction motors. IEEE Trans. Ind. Electron. 57(1), 244–251 (2010)CrossRefGoogle Scholar
  14. 14.
    Saleh A. Al-Jufout, Wasseem H. Al-rousan, Caisheng Wan, Optimization of induction motor equivalent circuit parameter estimation based on manufacturer’s data. Energies 11, 1792 (2018)CrossRefGoogle Scholar
  15. 15.
    D.K. Chaturvedi, Soft computing techniques and its applications to electrical engineering (Springer, Germany, 2008)zbMATHGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Faculty of EngineeringDayalbagh Educational InstituteDayalbagh, AgraIndia

Personalised recommendations