ECG Signal Analysis and Arrhythmia Detection using Wavelet Transform

  • Inderbir Kaur
  • Rajni Rajni
  • Anupma Marwaha
Original Contribution


Electrocardiogram (ECG) is used to record the electrical activity of the heart. The ECG signal being non-stationary in nature, makes the analysis and interpretation of the signal very difficult. Hence accurate analysis of ECG signal with a powerful tool like discrete wavelet transform (DWT) becomes imperative. In this paper, ECG signal is denoised to remove the artifacts and analyzed using Wavelet Transform to detect the QRS complex and arrhythmia. This work is implemented in MATLAB software for MIT/BIH Arrhythmia database and yields the sensitivity of 99.85 %, positive predictivity of 99.92 % and detection error rate of 0.221 % with wavelet transform. It is also inferred that DWT outperforms principle component analysis technique in detection of ECG signal.


Electrocardiogram Discrete wavelet transform (DWT) Denoising QRS detection Arrhythmia 


  1. 1.
    K. Cheng-Tung, H. King-Chug, W. Tsung-Ching, W. Huan-Sheng, Wavelet-based ECG data compression system with linear quality control scheme. IEEE Trans. Biomed. Eng. 57(6), 1399–1409 (2010)CrossRefGoogle Scholar
  2. 2.
    M. Blanco-Velasco, F. Cruz-Roldan, J.I. Godino-Llorente, K.E. Barner, Wavelet packets feasibility study for the design of an ECG compressor. IEEE Trans. Biomed. Eng. 54(4), 766–769 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Abo-Zahhad, ECG signal compression using discrete wavelet transform, Discrete Wavelet Transforms—Theory and Applications, eds. by D. Juuso, T. Olkkonen (InTech, Europe, 2011), pp. 143–168Google Scholar
  4. 4.
    M. Faezipour, A. Saeed, S.C. Bulusu, M. Nourani, H. Minn, L. Tamil, A patient-adaptive profiling scheme for ECG beat classification. IEEE Trans. Inf. Technol. Biomed. 14(5), 1153–1165 (2010)CrossRefGoogle Scholar
  5. 5.
    M. Nirubama, ECG noise cancellation using RLS adaptive filter. Middle East J. Sci. Res. 18(12), 1807–1811 (2013)Google Scholar
  6. 6.
    F. Sufi, I. Khalil, Diagnosis of cardiovascular abnormalities from compressed ECG: a data mining-based approach. IEEE Trans. Inf. Technol. Biomed. 15(1), 33–39 (2011)CrossRefGoogle Scholar
  7. 7.
    W. Jiang, S.G. Kong, Block-based neural networks for personalized ECG signal classification. IEEE Trans. Neural Netw. 18(6), 1750–1761 (2007)CrossRefGoogle Scholar
  8. 8.
    M.K. Islam, A.N.M.M. Haque, G. Tangim, T. Ahammad, M.R.H. Khondokar, Study and analysis of ECG signal using MATLAB and LABVIEW as effective tools. Int. J. Comput. Electr. Eng. 4(3), 404–408 (2012)CrossRefGoogle Scholar
  9. 9.
    S.Z. Mahmoodabadi, A. Ahmadian, M.D. Abolhasani, ECG Feature Extraction Using Daubechies Wavelets, Proceedings of the Fifth International Conference Visualization, Imaging and Image Processing (Benidorm, 2005)Google Scholar
  10. 10.
    I. Odinaka, L. Po-Hsiang, A.D. Kaplan, J.A. O’Sullivan, E.J. Sirevaag, J.W. Rohrbaugh, ECG biometric recognition: a comparative analysis. IEEE Trans. Inf. Forensics Secur. 7(6), 1812–1823 (2012)CrossRefGoogle Scholar
  11. 11.
    X. Liu, Y. Zheng, M.W. Phyu, B. Zhao, M. Je, X. Yuan, Multiple functional ECG signal is processing for wearable applications of long-term cardiac monitoring. IEEE Trans. Biomed. Eng. 58(2), 380–389 (2011)CrossRefGoogle Scholar
  12. 12.
    S.A. Jones, ECG Notes: Interpretation and Management Guide (F.A. Davis Company, Philadelphia, 2005)Google Scholar
  13. 13.
    L. Sun, Y. Lu, K. Yang, S. Li, ECG analysis using multiple instance learning for myocardial infarction detection. IEEE Trans. Biomed. Eng. 59(12), 3348–3356 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3), 230–236 (1985)CrossRefGoogle Scholar
  15. 15.
    V.X. Afonso, W.J. Tompkins, T.Q. Nguyen, S. Luo, ECG beat detection using filter banks. IEEE Trans. Biomed. Eng. 46(2), 192–202 (1999)CrossRefGoogle Scholar
  16. 16.
    K. Bert-Uwe, C. Hennig, R. Orglmeister, The principles of software QRS detection. IEEE Eng. Med. Biol. 21(1), 42–57 (2002)CrossRefGoogle Scholar
  17. 17.
    M. Moga, V.D. Moga, Gh.I. Mihalas, Continuous wavelet transform in ECG analysis: a concept or clinical uses,  Connecting Medical Informatics and Bio-Informatics, eds. by R. Engelbrecht et al. (ENMI, 2005), pp. 1143–1148Google Scholar
  18. 18.
    T. Ince, S. Kiranyaz, M. Gabbouj, A generic and robust system for automated patient-specific classification of ECG signals. IEEE Trans. Biomed. Eng. 56(5), 1415–1426 (2009)CrossRefGoogle Scholar
  19. 19.
    H.S. Zine-Eddine, A. Naït-Ali, QRS complex detection using empirical mode decomposition, Elsevier. Digit. Signal Process. 20(10), 1221–1228 (2010)Google Scholar
  20. 20.
    S. Ganesan, D. Sivakumar, T.A.D.A. Victoire, Efficient and low complexity analysis of bio-signals using continuous HAAR wavelet transforms for removing noise. Int. J. Eng. Sci. 2(11), 6317–6334 (2010)Google Scholar
  21. 21.
    D. Benitez, P.A. Gaydecki, A. Zaidi, A.P. Fitzpatrick, The use of the Hilbert transform in ECG signal analysis, Elsevier. Comput. Biol. Med. 31(5), 399–406 (2001)CrossRefGoogle Scholar
  22. 22.
    M. Sharma, H. Dalal, Noise removal from ECG signal and performance analysis using different filter. Int. J. Innov. Res. Electron. Commun. (IJIREC) 1, 32–39 (2014)Google Scholar
  23. 23.
    K. Vanisree, J. Singaraju, Automatic detection of ECG R-R interval using discrete wavelet transformation. Int. J. Comput. Sci. Eng. 3(4), 1599–1605 (2011)Google Scholar
  24. 24.
    S. Deshpande, S.O. Rajankar, ECG data compression using principal component analysis. Int. J. Electr. Electron. Comput. Syst. (IJEECS) 1, 13–16 (2013)Google Scholar
  25. 25.
    V. Gupta, R. Singh, G. Singh, R. Singh, An introduction to principal component analysis and its importance in biomedical signal processing, in International Conference on Life Science and Technology, vol. 3, (2011) pp. 29–33Google Scholar
  26. 26.
    M.T.U. Zaman, D. Hossain, M.T. Arefin, M.A. Rahman, S.N. Islam, A.K.M.F. Haque, Comparative analysis of denoising on ECG signal. Int. J. Emerg. Technol. Adv. Eng. 2, 479–486 (2012)Google Scholar
  27. 27.
    A.E. Villanueva-Luna, A. Jaramillo-Nunez, D. Sanchez-Lucero, C.M. Ortiz-Lima, J.G. Aguilar-Soto, A. Flores-Gil, M. May-Alarcon, De-noising audio signals using MATLAB wavelets toolbox. Engineering education and research using MATLAB (InTech, Europe, 2011)Google Scholar
  28. 28.
    I. Kaur, Rajni, G. Sikri, Denoising of ECG Signal with different wavelets. Int. J. Eng. Trends Technol. 9(13), 658–661 (2014)CrossRefGoogle Scholar
  29. 29.
    J.P.V. Madeiro, P.C. Cortez, F.I. Oliveira, R.S. Siqueira, A new approach to QRS segmentation based on wavelet bases and adaptive threshold technique, Elsevier. Med. Eng. Phys. 29(1), 26–37 (2007)CrossRefGoogle Scholar
  30. 30.
    Y. Sung-Nien, C. Ying-Hsiang, Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network, Elsevier. Pattern Recognit. Lett. 28(10), 1142–1150 (2007)CrossRefGoogle Scholar
  31. 31.
    Rajni, I. Kaur, Electrocardiogram signal analysis-an overview. Int. J. Comput. Appl. 84(7), 22–25 (2013)Google Scholar
  32. 32.
    M.P.S. Chawla, Detection of indeterminacies in corrected ECG signals using parameterized multidimensional independent component analysis, Taylor and Francis. Comput. Math. Methods Med. 10(2), 85–115 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
  34. 34.
    I. Kaur, Rajni, Denoising of ECG signal using filters and wavelet transform, International Conference on Recent Trends in Electronics, Data Communication and Computing (ICRTEDC-2014), Gurukul Vidyapeeth, IJEEE-APM 2014, Punjab (2014), pp. 28–31Google Scholar
  35. 35.
    M. Llamedo, J.P. Martinez, Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans. Biomed. Eng. 58(3), 616–625 (2011)CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2016

Authors and Affiliations

  1. 1.Shaheed Bhagat Singh State Technical CampusFerozepurIndia
  2. 2.Sant Longowal Institute of Engineering and TechnologyLongowal, SangrurIndia

Personalised recommendations