Advertisement

Improved Wastewater Treatment by Combined System of Microbial Fuel Cell with Activated Carbon/TiO2 Cathode Catalyst and Membrane Bioreactor

  • G. D. Bhowmick
  • Sovik Das
  • M. M. GhangrekarEmail author
  • A. Mitra
  • R. Banerjee
Original Contribution
  • 90 Downloads

Abstract

A two-stage continuous process was developed for treating medium-strength wastewater combining microbial fuel cell (MFC) using activated carbon (AC)/TiO2 composite as cathode catalyst and submerged membrane bioreactor (MBR). Synthetic wastewater, having total chemical oxygen demand (COD) of around 3 g/L, was introduced first in the anodic chamber of MFC in a continuous mode of operation followed by aerobic MBR. Submerged hollow-fibre ultra-filtration membrane assembly was attached to draw permeate from MBR. The electrical performance of MFC was evaluated by polarisation, which showed a maximum volumetric power density of 1.02 W/m3 with much lower whole-cell internal resistance of 10 Ω. The coulombic efficiency of MFC was estimated to be 0.31%, demonstrating AC/TiO2 composite as a promising cathode catalyst for applications in MFC. The permeate of MFC–MBR system showed 98.3 ± 0.3% and 81.9 ± 1.8% of COD and total Kjeldahl nitrogen removal efficiency, respectively, producing permeate with total suspended solids concentration of less than 5 mg/L. Thus, a two-stage reliable process for treatment of wastewater is demonstrated using integrated MFC–MBR for generating high-quality recyclable effluent and facilitating recovery of bio-electricity.

Keywords

Bio-electricity Cathode catalyst Membrane bioreactor Microbial fuel cell Titanium dioxide Wastewater treatment 

Notes

Acknowledgements

The research project was supported by Department of Biotechnology, Government of India (BT/IN/INNO-INDIGO/28/MMG/2015-16) by providing financial assistance. The help extended by Sreemoyee Ghosh Ray during initial experimentation planning is duly acknowledged.

References

  1. 1.
    C.P.L. Grady, G.T. Daigger, H.C. Lim, Hazard. Waste. (1999).  https://doi.org/10.1007/s13398-014-0173-7.2 CrossRefGoogle Scholar
  2. 2.
  3. 3.
    S. Das, P. Chatterjee, M.M. Ghangrekar, Water Sci. Technol. (2018).  https://doi.org/10.2166/wst.2018.002 CrossRefGoogle Scholar
  4. 4.
    S.T. Oh, J.R. Kim, G.C. Premier, T.H. Lee, C. Kim, W.T. Sloan, Biotechnol. Adv. (2010).  https://doi.org/10.1016/j.biotechadv.2010.07.008 CrossRefGoogle Scholar
  5. 5.
    C.A. Martínez-Huitle, S. Ferro, Chem. Soc. Rev. (2006).  https://doi.org/10.1039/b517632h CrossRefGoogle Scholar
  6. 6.
    A.T. Maulidiyah, d Nurwahidah, d Wibowo, A.T. Maulidiyah, m Nurdin, Environ. Nanotech. Monit. Manag. (2016).  https://doi.org/10.1016/j.enmm.2017.06.002 CrossRefGoogle Scholar
  7. 7.
    H. Feng, Y. Liang, K. Guo, W. Chen, D. Shen, L. Huang, Y. Zhou, M. Wang, Y. Long, Environ. Sci. Technol. Lett. (2016).  https://doi.org/10.1021/acs.estlett.6b00410 CrossRefGoogle Scholar
  8. 8.
    S. Ait Ali Yahia, L. Hamadou, M.J. Salar-García, A. Kadri, V.M. Ortiz-Martínez, F.J. Hernández-Fernández, A. Pérezde los Rios, N. Benbrahim, Appl. Surf. Sci. (2016).  https://doi.org/10.1016/j.apsusc.2016.07.018 CrossRefGoogle Scholar
  9. 9.
    M. Zhang, Y. Wang, P. Liang, X. Zhao, M. Liang, B. Zhou, Chemosphere (2019).  https://doi.org/10.1016/j.chemosphere.2018.09.085 CrossRefGoogle Scholar
  10. 10.
    P.N. Venkatesan, S. Dharmalingam, Mater. Renew. Sustain Energy (2016).  https://doi.org/10.1007/s40243-016-0074-0 CrossRefGoogle Scholar
  11. 11.
    N. Abdullaha, S.K. Kamarudin, J. of Power Sour. (2015).  https://doi.org/10.1016/j.jpowsour.2014.12.014 CrossRefGoogle Scholar
  12. 12.
    J. Ma, Z. Wang, D. He, Y. Li, Z. Wu, Water Res. (2015).  https://doi.org/10.1016/j.watres.2015.03.033 CrossRefGoogle Scholar
  13. 13.
    P. Côté, H. Buisson, C. Pound, G. Arakaki, Desalination (1997).  https://doi.org/10.1016/S0011-9164(97)00128-8 CrossRefGoogle Scholar
  14. 14.
    L. Van Dijk, G.C.G. Roncken, Water Sci. Technol. (1997).  https://doi.org/10.1016/S0273-1223(97)00219-9 CrossRefGoogle Scholar
  15. 15.
    S. Rosenberger, U. Krüger, R. Witzig, W. Manz, U. Szewzyk, M. Kraume, Water Res. (2002).  https://doi.org/10.1016/S0043-1354(01)00223-8 CrossRefGoogle Scholar
  16. 16.
    S.H. Yoon, H.S. Kim, S. Lee, Process Biochem. (2004).  https://doi.org/10.1016/j.procbio.2003.09.023 CrossRefGoogle Scholar
  17. 17.
    Z.S. Han, J.Y. Tian, H. Liang, J. Ma, H.R. Yu, K. Li, A. Ding, G.B. Li, Bioresour. Technol. (2013).  https://doi.org/10.1016/j.biortech.2012.11.151 CrossRefGoogle Scholar
  18. 18.
    S.W. Hasan, M. Elektorowicz, J.A. Oleszkiewicz, Bioresour. Technol. (2012).  https://doi.org/10.1016/j.biortech.2012.06.043 CrossRefGoogle Scholar
  19. 19.
    J. Cha, S. Choi, H. Yu, H. Kim, C. Kim, Bioelectrochemistry (2010).  https://doi.org/10.1016/j.bioelechem.2009.07.009 CrossRefGoogle Scholar
  20. 20.
    B. Min, I. Angelidaki, J. Power Sour. (2008).  https://doi.org/10.1016/j.jpowsour.2008.01.076 CrossRefGoogle Scholar
  21. 21.
    H. Yuan, Z. He, Bioresour. Technol. (2015).  https://doi.org/10.1016/j.biortech.2015.05.058 CrossRefGoogle Scholar
  22. 22.
    W. Liu, H. Jia, J. Wang, H. Zhang, C. Xin, Y. Zhang, Environ. Sci. Pollut. Res. (2018).  https://doi.org/10.1007/s11356-018-2656-0 CrossRefGoogle Scholar
  23. 23.
    Y. Wang, H. Jia, J. Wang, B. Cheng, G. Yang, F. Gao, Bioresour. Technol. (2018).  https://doi.org/10.1016/j.biortech.2018.08.122 CrossRefGoogle Scholar
  24. 24.
    A. Lu, Y. Li, S. Jin, H. Ding, C. Zeng, X. Wang, C. Wang, Energy Fuels (2010).  https://doi.org/10.1021/ef901053j CrossRefGoogle Scholar
  25. 25.
    G.S. Jadhav, M.M. Ghangrekar, Bioresour. Technol. (2009).  https://doi.org/10.1016/j.biortech.2008.07.041 CrossRefGoogle Scholar
  26. 26.
    B.E. Logan, Microbial fuel cells (Wiley, Hoboken, 2008).  https://doi.org/10.1002/9780470258590 CrossRefGoogle Scholar
  27. 27.
    APHA, Water Environment Federation, American Water Works Association, Stand. Methods Exam. Water Wastewater. (1999)Google Scholar
  28. 28.
    G.D. Bhowmick, M.T. Noori, I. Das, B. Neethu, M.M. Ghangrekar, A. Mitra, Int. J. Hydrogen Energy (2018).  https://doi.org/10.1016/J.IJHYDENE.2018.02.188 CrossRefGoogle Scholar
  29. 29.
    T.T. More, M.M. Ghangrekar, Bioresour. Technol. (2010).  https://doi.org/10.1016/j.biortech.2009.08.045 CrossRefGoogle Scholar
  30. 30.
    B.R. Tiwari, M.M. Ghangrekar, Energy Fuels (2015).  https://doi.org/10.1021/ef5028197 CrossRefGoogle Scholar
  31. 31.
    T. Waller, C. Chen, S.L. Walker, Environ. Eng. Sci. (2017).  https://doi.org/10.1089/ees.2016.0364 CrossRefGoogle Scholar
  32. 32.
    X. Su, Y. Tian, Z. Sun, Y. Lu, Z. Li, Biosens. Bioelectron. (2013).  https://doi.org/10.1016/j.bios.2013.04.005 CrossRefGoogle Scholar
  33. 33.
    M.T. Noori, G.D. Bhowmick, B.R. Tiwari, M.M. Ghangrekar, C.K. Mukhrejee, MRS Adv. (2018).  https://doi.org/10.1557/adv.2018 CrossRefGoogle Scholar
  34. 34.
    S.G. Ray, G.D. Bhowmick, M.M. Ghangrekar, A. Mitra, Advances in wastewater treatment by combined microbial fuel cell-membrane bioreactor, in 13th IWA Specialized Conference on Small Water and Wastewater Systems, (2016). http://uest.ntua.gr/swws/proceedings/pdf/SWWS2016_Ghosh_Ray_Full_Paper.pdf
  35. 35.
    Y. Tian, H. Li, L. Li, X. Su, Y. Lu, W. Zuo, J. Zhang, Biosens. Bioelectron. (2014).  https://doi.org/10.1016/j.bios.2014.08.070 CrossRefGoogle Scholar
  36. 36.
    L. Xu, G.Q. Zhang, G.E. Yuan, H.Y. Liu, J.D. Liu, F.L. Yang, RSC Adv. (2015).  https://doi.org/10.1039/c5ra00735f CrossRefGoogle Scholar
  37. 37.
    T. Yu, L. Liu, Q. Yang, J. Song, F. Yang, RSC Adv. (2015).  https://doi.org/10.1039/C5RA05965H CrossRefGoogle Scholar
  38. 38.
    G. Zhou, Y. Zhou, G. Zhou, L. Lu, X. Wan, H. Shi, Bioresour. Technol. (2015).  https://doi.org/10.1016/j.biortech.2015.08.032 CrossRefGoogle Scholar
  39. 39.
    T. Alvarino, S. Suárez, M. Garrido, J.M. Lema, F. Omil, Chemosphere (2016).  https://doi.org/10.1016/j.chemosphere.2015.09.016 CrossRefGoogle Scholar
  40. 40.
    K.Y. Kim, W. Yang, Y. Ye, N. LaBarge, B.E. Logan, Bioresour. Technol. (2016).  https://doi.org/10.1016/j.biortech.2016.02.067 CrossRefGoogle Scholar
  41. 41.
    Y. Li, L. Liu, F. Yang, J. Mem. Sci. (2016).  https://doi.org/10.1016/j.memsci.2016.01.038 CrossRefGoogle Scholar
  42. 42.
    J. Wang, F. Bi, H.H. Ngo, W. Guo, H. Jia, H. Zhang, X. Zhang, Bioresour. Technol. (2016).  https://doi.org/10.1016/j.biortech.2015.10.042 CrossRefGoogle Scholar
  43. 43.
    G.D. Bhowmick, I. Chakraborty, M.M. Ghangrekar, A. Mitra, Bioresour. Technol. Reports (2019).  https://doi.org/10.1016/j.biteb.2019.100303 CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  • G. D. Bhowmick
    • 1
  • Sovik Das
    • 2
  • M. M. Ghangrekar
    • 2
    Email author
  • A. Mitra
    • 1
  • R. Banerjee
    • 1
  1. 1.Department of Agricultural and Food EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Civil EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations