Compound Options in Build–Operate–Transfer Projects with Default Risk for Highways in Taiwan

  • Yu-Lin Huang
  • Ching-Hsiang HsiehEmail author
Original Contribution


This study proposes a model for appraising the overall contract price of build–operate–transfer (BOT) projects with default risk in public works construction situations. The contract is assumed to have been terminated during its implementation period; then, this assumption is used to estimate the final simulated default situation and to calculate the BOT option price. Taiwan’s highway expansion project is used for an actual appraisal, analysing the project sensitivity and default price. A numerical solution is obtained using the Monte Carlo simulation method.


Build–operate–transfer Compound options Default Highway 



  1. 1.
    L. Trigeorgis, S.P. Mason, Midl. Corp. Finance J. 5, 14–21 (1987)Google Scholar
  2. 2.
    F. Black, M. Scholes, J. Pol, Econ. 81, 637–654 (1973)Google Scholar
  3. 3.
    R.C. Merton, J Finance 29, 449–470 (1974)Google Scholar
  4. 4.
    G. Barone-Adesi, R.E. Whaley, J Finance 42, 301–320 (1987)CrossRefGoogle Scholar
  5. 5.
    S. C. Myers, S. Majd, Abandonment value and project life, in Real Options and Investment under Uncertainty: Classical Readings and Recent Contributions (Cambridge, 2001), pp. 295–312Google Scholar
  6. 6.
    L. Quigg, J Finance 48, 621–640 (1993)CrossRefGoogle Scholar
  7. 7.
    Y.L. Huang, C.C. Pi, Construct. Manag. Econ. 27, 653–666 (2009)CrossRefGoogle Scholar
  8. 8.
    G. Grullon, E. Lyandres, A. Zhdanov, J Finance 67, 1499–1537 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Heydari, N. Ovenden, A. Siddiqui, Comput. Manag. Sci. 9, 109–138 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Rothwell, Energy J. 27, 37–54 (2012)Google Scholar
  11. 11.
    S.X. Zeng, T.W. Wan, C.M. Tam, D. Liu, Proc. ICE Water Manag. 161, 73–81 (2008)Google Scholar
  12. 12.
    J. Jun, Int. J. Strat. Prop. Manag. 14, 139–155 (2010)CrossRefGoogle Scholar
  13. 13.
    W. Liu, J.N. Lv, Q. Zou, Syst. Eng. 12, 009 (2012)Google Scholar
  14. 14.
    J.M. Harrison, D.M. Kreps, J. Econ. Theory 20, 381–408 (1979)CrossRefGoogle Scholar
  15. 15.
    S.E. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, vol. 11 (Springer, New York, 2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    R. Geske, J. Financ. Econ. 7, 63–81 (1979)CrossRefGoogle Scholar
  17. 17.
    M.M. Musiela, Rutkowski, Martingale Methods in Financial Modelling, vol. 36 (Springer, New York, 2006)Google Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringNational Chiao Tung UniversityHsin-ChuTaiwan

Personalised recommendations